Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 46, 2024 - Issue 7
74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

microRNA-mRNA expression profiles in the skeletal muscle of myotonic dystrophy type 1

, , , , , , & ORCID Icon show all
Pages 613-625 | Received 02 Nov 2023, Accepted 30 Mar 2024, Published online: 11 Apr 2024

References

  • Fu YH, Pizzuti A, Fenwick RG Jr., et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science. 1992;255(5049):1256–1258. doi: 10.1126/science.1546326
  • Wang ET, Ward AJ, Cherone JM, et al. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome Res. 2015;25(6):858–871. doi: 10.1101/gr.184390.114
  • Suzuki H, Takeuchi M, Sugiyama A, et al. Alternative splicing produces structural and functional changes in CUGBP2. BMC Biochem. 2012;13(1):6. doi: 10.1186/1471-2091-13-6
  • Ladd AN, Stenberg MG, Swanson MS, et al. Dynamic balance between activation and repression regulates pre-mRNA alternative splicing during heart development. Dev Dyn. 2005;233(3):783–793. doi: 10.1002/dvdy.20382
  • Wang GS, Kearney DL, De Biasi M, et al. Elevation of RNA-binding protein CUGBP1 is an early event in an inducible heart-specific mouse model of myotonic dystrophy. J Clin Invest. 2007;117(10):2802–2811. doi: 10.1172/jci32308
  • Leroy O, Dhaenens CM, Schraen-Maschke S, et al. ETR-3 represses tau exons 2/3 inclusion, a splicing event abnormally enhanced in myotonic dystrophy type I. J Neurosci Res. 2006;84(4):852–859. doi: 10.1002/jnr.20980
  • Dhaenens CM, Tran H, Frandemiche ML, et al. Mis-splicing of Tau exon 10 in myotonic dystrophy type 1 is reproduced by overexpression of CELF2 but not by MBNL1 silencing. Biochim Biophys Acta. 2011;1812(7):732–742. doi: 10.1016/j.bbadis.2011.03.010
  • Nezu Y, Kino Y, Sasagawa N, et al. Expression of MBNL and CELF mRNA transcripts in muscles with myotonic dystrophy. Neuromuscular Disorders. 2007;17(4):306–312. doi: 10.1016/j.nmd.2007.01.002
  • Gambardella S, Rinaldi F, Lepore SM, et al. Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. J Transl Med. 2010;8(48). doi: 10.1186/1479-5876-8-48
  • Perbellini R, Greco S, Sarra-Ferraris G, et al. Dysregulation and cellular mislocalization of specific miRnas in myotonic dystrophy type 1. Neuromuscular Disorders. 2011;21(2):81–88. doi: 10.1016/j.nmd.2010.11.012
  • Greco S, Perfetti A, Fasanaro P, et al. Deregulated microRnas in myotonic dystrophy type 2. PLOS ONE. 2012;7(6):e39732. doi: 10.1371/journal.pone.0039732
  • Fernandez-Costa JM, Garcia-Lopez A, Zuñiga S, et al. Expanded CTG repeats trigger miRNA alterations in drosophila that are conserved in myotonic dystrophy type 1 patients. Hum Mol Genet. 2013;22(4):704–716. doi: 10.1093/hmg/dds478
  • Fritegotto C, Ferrati C, Pegoraro V, et al. Micro-RNA expression in muscle and fiber morphometry in myotonic dystrophy type 1. Neurol Sci. 2017;38(4):619–625. doi: 10.1007/s10072-017-2811-2
  • Ambrose KK, Ishak T, Lian LH, et al. Deregulation of microRnas in blood and skeletal muscles of myotonic dystrophy type 1 patients. Neurol India. 2017;65(3):512–517. doi: 10.4103/neuroindia.NI_237_16
  • Cappella M, Perfetti A, Cardinali B, et al. High-throughput analysis of the RNA-induced silencing complex in myotonic dystrophy type 1 patients identifies the dysregulation of miR-29c and its target ASB2. Cell Death Dis. 2018;9(7):729. doi: 10.1038/s41419-018-0769-5
  • Rau F, Freyermuth F, Fugier C, et al. Misregulation of miR-1 processing is associated with heart defects in myotonic dystrophy. Nat Struct Mol Biol. 2011;18(7):840–845. doi: 10.1038/nsmb.2067
  • Kalsotra A, Singh RK, Gurha P, et al. The Mef2 transcription network is disrupted in myotonic dystrophy heart tissue, dramatically altering miRNA and mRNA expression. Cell Rep. 2014;6(2):336–345. doi: 10.1016/j.celrep.2013.12.025
  • Perfetti A, Greco S, Cardani R, et al. Validation of plasma microRnas as biomarkers for myotonic dystrophy type 1. Sci Rep. 2016;6(38174). doi: 10.1038/srep38174
  • Pegoraro V, Cudia P, Baba A, et al. MyomiRNAs and myostatin as physical rehabilitation biomarkers for myotonic dystrophy. Neurol Sci. 2020;41(10):2953–2960. doi: 10.1007/s10072-020-04409-2
  • Fernández-Torrón R, García-Puga M, Emparanza JI, et al. Cancer risk in DM1 is sex-related and linked to miRNA-200/141 downregulation. Neurology. 2016;87(12):1250–1257. doi: 10.1212/wnl.0000000000003124
  • Cerro-Herreros E, Sabater-Arcis M, Fernandez-Costa JM, et al. miR-23b and miR-218 silencing increase Muscleblind-like expression and alleviate myotonic dystrophy phenotypes in mammalian models. Nat Commun. 2018;9(1):2482. doi: 10.1038/s41467-018-04892-4
  • Morton SU, Sefton CR, Zhang H, et al. microRNA-mRNA profile of skeletal muscle differentiation and relevance to congenital myotonic dystrophy. Int J Mol Sci. 2021;22(5). doi: 10.3390/ijms22052692
  • Dong W, Liu Q, Wang ZC, et al. miR-322/miR-503 clusters regulate defective myoblast differentiation in myotonic dystrophy RNA-toxic by targeting Celf1. Toxicol Res (Camb). 2021;10(1):29–39. doi: 10.1093/toxres/tfaa096
  • Shen X, Xu F, Li M, et al. miR-322/-503 rescues myoblast defects in myotonic dystrophy type 1 cell model by targeting CUG repeats. Cell Death Dis. 2020;11(10):891. doi: 10.1038/s41419-020-03112-6
  • Kamsteeg EJ, Kress W, Catalli C, et al. Best practice guidelines and recommendations on the molecular diagnosis of myotonic dystrophy types 1 and 2. Eur J Hum Genet. 2012;20(12):1203–1208. doi: 10.1038/ejhg.2012.108
  • Li M, Wang Z, Cui F, et al. Multisystemic impairments in 93 Chinese Patients with myotonic dystrophy Type 1. Front Neurol. 2020;11(277). doi: 10.3389/fneur.2020.00277
  • Wright GW, Simon RM. A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics. 2003;19(18):2448–2455. doi: 10.1093/bioinformatics/btg345
  • Miyazaki Y, Adachi H, Katsuno M, et al. Viral delivery of miR-196a ameliorates the SBMA phenotype via the silencing of CELF2. Nat Med. 2012;18(7):1136–1141. doi: 10.1038/nm.2791
  • López Castel A, Overby SJ, Artero R. MicroRNA-based therapeutic perspectives in myotonic dystrophy. Int J Mol Sci. 2019;20(22). doi: 10.3390/ijms20225600
  • Braig S, Mueller DW, Rothhammer T, et al. MicroRNA miR-196a is a central regulator of HOX-B7 and BMP4 expression in malignant melanoma. Cell Mol Life Sci. 2010;67(20):3535–3548. doi: 10.1007/s00018-010-0394-7
  • Velazquez-Martin JP, Pavlin CJ, Simpson ER. Association between uveal melanoma and myotonic dystrophy: a series of 3 cases. JAMA Ophthalmol. 2013;131(2):246–249. doi: 10.1001/jamaophthalmol.2013.581
  • Win AK, Perattur PG, Pulido JS, et al. Increased cancer risks in myotonic dystrophy. Mayo Clin Proc. 2012;87(2):130–135. doi: 10.1016/j.mayocp.2011.09.005
  • Shen Q, Zhou T. Knockdown of lncRNA TUG1 protects lens epithelial cells from oxidative stress-induced injury by regulating miR-196a-5p expression in age-related cataracts. Exp Ther Med. 2021;22(5):1286. doi: 10.3892/etm.2021.10721
  • Eisenberg I, Eran A, Nishino I, et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 2007;104(43):17016–17021. doi: 10.1073/pnas.0708115104
  • Fiorillo AA, Tully CB, Damsker JM, et al. Muscle miRnaome shows suppression of chronic inflammatory miRnas with both prednisone and vamorolone. Physiol Genomics. 2018;50(9):735–745. doi: 10.1152/physiolgenomics.00134.2017
  • Chen G, Masuda A, Konishi H, et al. Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy. Sci Rep. 2016;6(25317). doi: 10.1038/srep25317
  • Huang K, Masuda A, Chen G, et al. Inhibition of cyclooxygenase-1 by nonsteroidal anti-inflammatory drugs demethylates MeR2 enhancer and promotes Mbnl1 transcription in myogenic cells. Sci Rep. 2020;10(1):2558. doi: 10.1038/s41598-020-59517-y
  • Kanadia RN, Shin J, Yuan Y, et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci USA. 2006;103(31):11748–11753. doi: 10.1073/pnas.0604970103
  • Kuyumcu-Martinez NM, Wang GS, Cooper TA. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell. 2007;28(1):68–78. doi: 10.1016/j.molcel.2007.07.027
  • Ito Y, Kayama T, Asahara H. A systems approach and skeletal myogenesis. Comp Funct Genomics. 2012;2012(759407):1–7. doi: 10.1155/2012/759407
  • Rao PK, Kumar RM, Farkhondeh M, et al. Myogenic factors that regulate expression of muscle-specific microRnas. Proc Natl Acad Sci USA. 2006;103(23):8721–8726. doi: 10.1073/pnas.0602831103
  • Sweetman D, Goljanek K, Rathjen T, et al. Specific requirements of MRFs for the expression of muscle specific microRnas, miR-1, miR-206 and miR-133. Dev Biol. 2008;321(2):491–499. doi: 10.1016/j.ydbio.2008.06.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.