890
Views
26
CrossRef citations to date
0
Altmetric
Theory and Methods

A Randomized Exchange Algorithm for Computing Optimal Approximate Designs of Experiments

, &
Pages 348-361 | Received 27 Jan 2018, Accepted 30 Oct 2018, Published online: 11 Apr 2019

References

  • Ahipasaoglu, S. D. (2015), “A First-order Algorithm for the A-optimal Experimental Design Problem: A Mathematical Programming Approach,” Statistics and Computing, 25, 1113–1127.
  • Ahipasaoglu, S. D. (2015), “Fast Algorithms for the Minimum Volume Estimator,” Journal of Global Optimization, 62, 351–370.
  • Atkinson, A. C., Donev, A. N., and Tobias, R. D. (2007), Optimum Experimental Designs, With SAS, Oxford: Oxford University Press.
  • Atwood, C.L. (1973), “Sequences Converging to D-Optimal Designs of Experiments,” The Annals of Statistics 1, 342–352. DOI: 10.1214/aos/1176342371.
  • Böhning, D. (1986), “A Vertex-Exchange-Method in D-Optimal Design Theory,” Metrika 33, 337–347. DOI: 10.1007/BF01894766.
  • De Castro, Y., Gamboa, F., Henrion, D., Hess, R., and Lasserre, J. B. (2019), “Approximate Optimal Designs for Multivariate Polynomial Regression,” Annals of Statistics 47, 127–155. DOI: 10.1214/18-AOS1683.
  • Chambolle, A., Ehrhardt, M. J., Richtárik, P., and Schönlieb, C. B. (2017), “Stochastic Primal–Dual Hybrid Gradient Algorithm With Arbitrary Sampling and Imaging Applications,” arXiv:1706.04957, 1–25.
  • Coetzer, R., and Haines, L.(2017), “The Construction of D-and I-optimal Designs for Mixture Experiments With Linear Constraints on the Components,” Chemometrics and Intelligent Laboratory Systems, 171, 112–124. DOI: 10.1016/j.chemolab.2017.10.007.
  • Cook, R. D., and Nachtsheim, C. J. (1982), “Model Robust, Linear-Optimal Designs,” Technometrics, 24, 49–54. DOI: 10.1080/00401706.1982.10487708.
  • Cornell, J. A. (2011), Experiments With Mixtures: Designs, Models, and the Analysis of Mixture Data (Vol. 403). New York: Wiley.
  • Csiba, D., and Richtárik, P. (2017), “Global Convergence of Arbitrary-Block Gradient Methods for Generalized Polyak-Lojasiewicz Functions,” arXiv preprint arXiv:1709.03014.
  • Dette, H., Pepelyshev, A., and Zhigljavsky, A. (2008), “Improving Updating Rules in Multiplicative Algorithms for Computing D-optimal Designs,” Computational Statistics & Data Analysis, 53, 312–320. DOI: 10.1016/j.csda.2008.10.002.
  • Fedorov, V.V. (1972), Theory of Optimal Experiments, New York: Academic Press.
  • Fedorov, V.V., and Hackl, P. (2012), Model-oriented Design of Experiments (Vol 125). New York: Springer Science & Business Media.
  • Fercoq, O., and Richtárik, P. (2015), “Accelerated, Parallel and PROXimal Coordinate Descent.” SIAM Journal on Optimization, 25, pp. 1997–2023. DOI: 10.1137/130949993.
  • Gaffke, N., and Schwabe, R. (2019), “Quasi-Newton Algorithm for Optimal Approximate Linear Regression Design: Optimization in Matrix Space,” Journal of Statistical Planning and Inference, 198, 62–78. DOI: 10.1016/j.jspi.2018.03.005.
  • Goos, P., Jones, B., and Syafitri, U. (2016), “I-Optimal Design of Mixture Experiments,” Journal of the American Statistical Association, 111, 899–911. DOI: 10.1080/01621459.2015.1136632.
  • Gower, R.M., and Richtárik, P. (2015), “Randomized Iterative Methods for Linear Systems,” SIAM Journal on Matrix Analysis and Applications, 36, 1660–1690. DOI: 10.1137/15M1025487.
  • Gürbüzbalaban, M., Ozdaglar, A., and Parrilo, P. (2015), “Why Random Reshuffling Beats Stochastic Gradient Descent,” arXiv preprint arXiv:1510.08560.
  • Harman, R. (2014), “Multiplicative Methods for Computing D-optimal Stratified Designs of Experiments,” Journal of Statistical Planning and Inference, 146, 82–94. DOI: 10.1016/j.jspi.2013.10.003.
  • Harman, R., and Pronzato, L. (2007), “Improvements on Removing Nonoptimal Support Points in D-optimum Design Algorithms,” Statistics & Probability Letters, 77, 90–94. DOI: 10.1016/j.spl.2006.05.014.
  • Jaggi, M., Smith, V., Takáč, M., Terhorst, J., Krishnan, S., Hofmann, T., and Jordan, M.I. (2014), “Communication-Efficient Distributed Dual Coordinate Ascent,” in Advances in Neural Information Processing Systems, eds. Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, Red Hook, NY: Curran Associates, Inc., 3068–3076.
  • Konečný, J., Liu, J., Richtárik, P., and Takáč, M. (2016), “Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting,” IEEE Journal of Selected Topics in Signal Processing, 10, 242–255. DOI: 10.1109/JSTSP.2015.2505682.
  • Lee, Y. T., and Sidford, A. (2010), “Efficient Accelerated Coordinate Descent Methods and Faster Algorithms for Solving Linear Systems,” IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS).
  • Leventhal, D., and Lewis, A. S. (2010), “Randomized Methods for Linear Constraints: Convergence Rates and Conditioning,” Mathematics of Operations Research, 35, 641–654. DOI: 10.1287/moor.1100.0456.
  • Mandal, A., Wong, W. K., and Yu, Y. (2015), “Algorithmic Searches for Optimal Designs,” in Handbook of Design and Analysis of Experiments, eds. Dean A., Morris M., Stufken J., Bingham D., Boca Raton, FL: CRC Press, pp. 755–783.
  • Molchanov, I., and Zuyev, S. (2002), “Steepest Descent Algorithms in a Space of Measures,” Statistics and Computing, 12, 115–123. DOI: 10.1023/A:1014878317736.
  • Myers, R.H., Montgomery, D.C., and Anderson-Cook, C.M. (2016), Response Surface Methodology: Process and Product Optimization Using Designed Experiments, Hoboken, NJ: John Wiley & Sons.
  • Necoara, I., Nesterov, Y., and Glineur, F. (2011), “A Random Coordinate Descent Method on Large Optimization Problems With Linear Constraints,” manuscript.
  • Nesterov, Y. (2012), “Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems,” SIAM Journal on Optimization, 22, 341–362. DOI: 10.1137/100802001.
  • Pázman, A. (1986), Foundations of Optimum Experimental Design, Dordrecht: Reidel.
  • Platt, J. (1998), “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines,” manuscript. https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
  • Pronzato, L. (2013), “A Delimitation of the Support of Optimal Designs for Kiefer’s ϕp -class of Criteria,” Statistics & Probability Letters, 83, 2721–2728. DOI: 10.1016/j.spl.2013.09.009.
  • Pronzato, L., and Pázman, A. (2013), Design of Experiments in Nonlinear Models (Vol. 212), Lecture Notes in Statistics, Springer.
  • Pronzato, L., and Zhigljavsky, A.A. (2014), “Algorithmic Construction of Optimal Designs on Compact Sets for Concave and Differentiable Criteria,” Journal of Statistical Planning and Inference, 154, 141–155. DOI: 10.1016/j.jspi.2014.04.005.
  • Pukelsheim, F. (2006), “Optimal Design of Experiments (Classics in Applied Mathematics),” Philadelphia, PA: Society for Industrial and Applied Mathematics.
  • Qu, Z., Richtárik, P., and Zhang, T. (2015), “Quartz: Randomized Dual Coordinate Ascent With Arbitrary Sampling,” in Advances in Neural Information Processing Systems, eds. C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, 865–873. Red Hook, NY: Curran Associates, Inc.
  • R Core Team (2016), R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing, available at https://www.R-project.org/.
  • Richtárik, P., and Takáč, M. (2016), “Parallel Coordinate Descent Methods for Big Data Optimization,” Mathematical Programming, 144, 433–484. DOI: 10.1007/s10107-015-0901-6.
  • Richtárik, P., and Takáč, M. (2016), “Distributed Coordinate Descent Method for Learning With Big Data,” Journal of Machine Learning Research, 17, 1–25.
  • Sagnol, G. (2011), “Computing Optimal Designs of Multiresponse Experiments Reduces to Second-order Cone Programming,” Journal of Statistical Planning and Inference, 121, 1684–1708. DOI: 10.1016/j.jspi.2010.11.031.
  • Sagnol, G., and Harman, R. (2015), “Computing Exact D-Optimal Designs by Mixed Integer Second Order Cone Programming,” The Annals of Statistics, 43, 2198–2224. DOI: 10.1214/15-AOS1339.
  • Silvey, S. D., Titterington, D. H., and Torsney, B. (1978), “An Algorithm for Optimal Designs on a Design Space,” Communications in Statistics – Theory and Methods, 7, 1379–1389. DOI: 10.1080/03610927808827719.
  • Shalev-Shwartz, S., and Zhang, T. (2013), “Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization,” Journal of Machine Learning Research, 14, 567–599.
  • Sun, R., and Ye, Y. (2016), “Worst-case Complexity of Cyclic Coordinate Descent: O(n2) Gap With Randomized Version.” arXiv:1604.07130, pp. 1–39.
  • Teeyapan, K., Theera-Umpon, N., and Auephanwiriyakul, S. (2017), “Ellipsoidal Support Vector Data Description,” Neural Computing and Applications, 28, 337–347. DOI: 10.1007/s00521-016-2343-3.
  • Titterington, D.M. (1975), “Optimal Design: Some Geometrical Aspects of D-optimality.” Biometrika, 62, 313–320. DOI: 10.1093/biomet/62.2.313.
  • Titterington, D.M. (1978), “Estimation of Correlation Coefficients by Ellipsoidal Trimming,” Applied Statistics, 27, 227–234.
  • Todd, M. J. (2016), “Minimum-Volume Ellipsoids: Theory and Algorithms,” Philadelphia, PA: Society for Industrial and Applied Mathematics.
  • Todd, M. J., and Yildirim, E. A. (2007), “On Khachiyan’s Algorithm for the Computation of Minimum-Volume Enclosing Ellipsoids,” Discrete Applied Mathematics, 155, 1731–1744. DOI: 10.1016/j.dam.2007.02.013.
  • Torsney, B., and Martín-Martín, R. (2009), “Multiplicative Algorithms for Computing Optimum Designs,” Journal of Statistical Planning and Inference, Vol 139, pp. 3947–3961. DOI: 10.1016/j.jspi.2009.05.007.
  • Uciǹski, D., and Patan, M. (2007), “D-optimal Design of a Monitoring Network for Parameter Estimation of Distributed Systems,” Journal of Global Optimization, 39, 291–322. DOI: 10.1007/s10898-007-9139-z.
  • Yang, M., Biedermann, S., and Tang, E. (2013), “On Optimal Designs for Nonlinear Models: A General and Efficient Algorithm,” Journal of the American Statistical Association, 108, 1411–1420. DOI: 10.1080/01621459.2013.806268.
  • Yu, Y. (2010), “Monotonic Convergence of a General Algorithm for Computing Optimal Designs,” The Annals of Statistics, 38, 1593–1606. DOI: 10.1214/09-AOS761.
  • Yu, Y. (2011), “D-optimal Designs Via a Cocktail Algorithm,” Statistics and Computing, 21, 475–481.
  • Van Aelst, S., and Rousseeuw, P. (2009), “Minimum Volume Ellipsoid,” Wiley Interdisciplinary Reviews: Computational Statistics, 1, 71–82. DOI: 10.1002/wics.19.
  • Vandenberghe, L., Boyd, S., and Wu, S. (1998), “Determinant Maximization With Linear Matrix Inequality Constraints,” SIAM Journal on Matrix Analysis, 19, 499–533. DOI: 10.1137/S0895479896303430.
  • Wynn, H.P. (1970), “The Sequential Generation of D-optimum Experimental Designs,” The Annals of Mathematical Statistics, 41, 1655–1664. DOI: 10.1214/aoms/1177696809.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.