2,031
Views
7
CrossRef citations to date
0
Altmetric
Applications and Case Studies Discussion

LESA: Longitudinal Elastic Shape Analysis of Brain Subcortical Structures

, ORCID Icon, , , &
Pages 3-17 | Received 04 Oct 2021, Accepted 09 Jul 2022, Published online: 20 Sep 2022

References

  • Amézquita, E. J., Quigley, M. Y., Ophelders, T., Munch, E., and Chitwood, D. H. (2020), “The Shape of Things to Come: Topological Data Analysis and Biology, from Molecules to Organisms,” Developmental Dynamics, 249, 816–833. DOI: 10.1002/dvdy.175.
  • Basaia, S., Agosta, F., Wagner, L., Canu, E., Magnani, G., Santangelo, R., Filippi, M., and ADNI (2019), “Automated Classification of Alzheimer’s Disease and Mild Cognitive Impairment using a Single MRI and Deep Neural Networks,” NeuroImage: Clinical, 21, 101645. DOI: 10.1016/j.nicl.2018.101645.
  • Bauer, M., and Bruveris, M. (2011), “A New Riemannian Setting for Surface Registration,” in Proceedings of the 3rd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, pp. 182–194.
  • Coupé, P., Manjón, J. V., Lanuza, E., and Catheline, G. (2019), “Lifespan Changes of the Human Brain in Alzheimer’s Disease,” Scientific Reports, 9, 1–12. DOI: 10.1038/s41598-019-39809-8.
  • Dai, X., Lin, Z., and Müller, H.-G. (2020), “Modeling Sparse Longitudinal Data on Riemannian Manifolds,” Biometrics, 77, 1328–1341. DOI: 10.1111/biom.13385.
  • Dai, X., and Müller, H.-G. (2018), “Principal Component Analysis for Functional Data on Riemannian Manifolds and Spheres,” Annals of Statistics, 46, 3334–3361.
  • DeKraker, J., Lau, J. C., Ferko, K. M., Khan, A. R., and Köhler, S. (2020), “Hippocampal Subfields Revealed through Unfolding and Unsupervised Clustering of Laminar and Morphological Features in 3D BigBrain,” NeuroImage, 206, 116328. DOI: 10.1016/j.neuroimage.2019.116328.
  • Fan, J. and Gijbels, I. (2018), Local Polynomial Modelling and its Applications: Monographs on Statistics and Applied Probability 66, Boca Raton, FL: Routledge.
  • Fletcher, P. T. (2013), “Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds,” International Journal of Computer Vision, 105, 171–185.
  • Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L., Auerbach, E. J., Behrens, T. E., Coalson, T. S., Harms, M. P., Jenkinson, M., Moeller, S., Robinson, E. C., Sotiropoulos, S. N., Xu, J., Yacoub, E., Ugurbil, K., and Van Essen, D. C. (2016), “The Human Connectome Project’s Neuroimaging Approach,” Nature Neuroscience, 19, 1175–1187. DOI: 10.1038/nn.4361.
  • Howell, B. R., Styner, M. A., Gao, W., Yap, P.-T., Wang, L., Baluyot, K., Yacoub, E., Chen, G., Potts, T., Salzwedel, A., Li, G., Gilmore, J. H., Piven, J., Keith Smith, J., Shen, D., Ugurbil, K., Zhu, H., Lin, W., and Elison, J. T. (2019), “The UNC/UMN Baby Connectome Project (BCP): An Overview of the Study Design and Protocol Development,” NeuroImage, 185, 891–905. DOI: 10.1016/j.neuroimage.2018.03.049.
  • Hyun, J. W., Li, Y., Huang, C., Styner, M., Lin, W., Zhu, H., and ADNI (2016), “STGP: Spatio-Temporal Gaussian Process Models for Longitudinal Neuroimaging Data,” Neuroimage, 134, 550–562. DOI: 10.1016/j.neuroimage.2016.04.023.
  • James, G. M., Hastie, T. J., and Sugar, C. A. (2000), “Principal Component Models for Sparse Functional Data,” Biometrika, 87, 587–602. DOI: 10.1093/biomet/87.3.587.
  • Jermyn, I. H., Kurtek, S., Klassen, E., and Srivastava, A. (2012), “Elastic Shape Matching of Parameterized Surfaces using Square Root Normal Fields,” in European Conference on Computer Vision (ECCV), Springer, pp. 804–817.
  • Jermyn, I. H., Kurtek, S., Laga, H., and Srivastava, A. (2017), “Elastic Shape Analysis of Three-Dimensional Objects,” Synthesis Lectures on Computer Vision, 12, 1–185.
  • Kurtek, S., Klassen, E., Ding, Z., Jacobson, S. W., Jacobson, J. L., Avison, M. J., and Srivastava, A. (2010), “Parameterization-Invariant Shape Comparisons of Anatomical Surfaces,” IEEE Transactions on Medical Imaging, 30, 849–858. DOI: 10.1109/TMI.2010.2099130.
  • Lee, B. C., Tward, D. J., Hu, Z., Trouvé, A., and Miller, M. I. (2020), “Infinitesimal Drift Diffeomorphometry Models for Population Shape Analysis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 862–863.
  • Li, B., Shi, J., Gutman, B. A., Baxter, L. C., Thompson, P. M., Caselli, R. J., Wang, Y., and Initiative, A. D. N. (2016), “Influence of APOE Genotype on Hippocampal Atrophy over Time-an N= 1925 Surface-based ADNI Study,” PloS One, 11, e0152901. DOI: 10.1371/journal.pone.0152901.
  • Madsen, S. K., Gutman, B. A., Joshi, S. H., Toga, A. W., Jack Jr, C. R., Weiner, M. W., Thompson, P. M., and ADNI (2015), “Mapping Ventricular Expansion onto Cortical Gray Matter in Older Adults,” Neurobiology of Aging, 36, S32–S41. DOI: 10.1016/j.neurobiolaging.2014.03.044.
  • Miller, M. I., Trouvé, A., and Younes, L. (2002), “On the Metrics and Euler-Lagrange Equations of Computational Anatomy,” Annual Review of Biomedical Engineering, 4, 375–405. DOI: 10.1146/annurev.bioeng.4.092101.125733.
  • Miller, M. I., Trouvé, A., and Younes, L. (2006), “Geodesic Shooting for Computational Anatomy,” Journal of Mathematical Imaging and Vision, 24, 209–228.
  • Morra, J. H., Tu, Z., Apostolova, L. G., Green, A. E., Avedissian, C., Madsen, S. K., Parikshak, N., Toga, A. W., Jack Jr, C. R., Schuff, N., et al. (2009), “Automated Mapping of Hippocampal Atrophy in 1-year Repeat MRI Data from 490 Subjects with Alzheimer’s Disease, Mild Cognitive Impairment, and Elderly Controls,” NeuroImage, 45, S3–S15. DOI: 10.1016/j.neuroimage.2008.10.043.
  • Muralidharan, P., and Fletcher, P. T. (2012), “Sasaki Metrics for Analysis of Longitudinal Data on Manifolds,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1027–1034.
  • O’Dwyer, L., Lamberton, F., Matura, S., Tanner, C., Scheibe, M., Miller, J., Rujescu, D., Prvulovic, D., and Hampel, H. (2012), “Reduced Hippocampal Volume in Healthy Young ApoE4 Carriers: An MRI Study,” PloS One, 7, e48895. DOI: 10.1371/journal.pone.0048895.
  • Patenaude, B., Smith, S. M., Kennedy, D. N., and Jenkinson, M. (2011), “A Bayesian Model of Shape and Appearance for Subcortical Brain Segmentation,” NeuroImage, 56, 907–922. DOI: 10.1016/j.neuroimage.2011.02.046.
  • Petersen, R. C., Aisen, P., Beckett, L. A., Donohue, M., Gamst, A., Harvey, D. J., Jack, C., Jagust, W., Shaw, L., Toga, A., Trojanowski, J. Q., and Weiner, M. W. (2010), “Alzheimer’s Disease Neuroimaging Initiative (ADNI): Clinical Characterization,” Neurology, 74, 201–209. DOI: 10.1212/WNL.0b013e3181cb3e25.
  • Pizer, S. M., Fletcher, P. T., Joshi, S., Thall, A., Chen, J. Z., Fridman, Y., Fritsch, D. S., Gash, A. G., Glotzer, J. M., Jiroutek, M. R., Lu, C., Muller, K. E., Tracton, G., Yushkevich, P., and Chaney, E. L. (2003), “Deformable M-Reps for 3D Medical Image Segmentation,” International Journal of Computer Vision, 55, 85–106. DOI: 10.1023/A:1026313132218.
  • Qiu, A., and Miller, M. I. (2008), “Multi-Structure Network Shape Analysis via Normal Surface Momentum Maps,” NeuroImage, 42, 1430–1438. DOI: 10.1016/j.neuroimage.2008.04.257.
  • Shen, L., Farid, H., and McPeek, M. A. (2009), “Modeling Three-Dimensional Morphological Structures using Spherical Harmonics,” Evolution: International Journal of Organic Evolution, 63, 1003–1016. DOI: 10.1111/j.1558-5646.2008.00557.x.
  • Shi, J., Stonnington, C. M., Thompson, P. M., Chen, K., Gutman, B., Reschke, C., Baxter, L. C., Reiman, E. M., Caselli, R. J., Wang, Y., and Alzheimer’s Disease Neuroimaging Initiative. (2015), “Studying Ventricular Abnormalities in Mild Cognitive Impairment with Hyperbolic Ricci Flow and Tensor-based Morphometry,” NeuroImage, 104, 1–20. DOI: 10.1016/j.neuroimage.2014.09.062.
  • Singh, N., Vialard, F.-X., and Niethammer, M. (2015), “Splines for Diffeomorphisms,” Medical Image Analysis, 25, 56–71. DOI: 10.1016/j.media.2015.04.012.
  • Striepens, N., Scheef, L., Wind, A., Meiberth, D., Popp, J., Spottke, A., Kölsch, H., Wagner, M., and Jessen, F. (2011), “Interaction Effects of Subjective Memory Impairment and ApoE4 Genotype on Episodic Memory and Hippocampal Volume,” Psychological Medicine, 41, 1997–2006. DOI: 10.1017/S0033291711000067.
  • Styner, M., Oguz, I., Xu, S., Brechbuhler, C., Pantazis, D., Levitt, J. J., Shenton, M. E., and Gerig, G. (2006), “Framework for the Statistical Shape Analysis of Brain Structures using SPHARM-PDM,” The Insight Journal, 1071, 242–250. DOI: 10.54294/owxzil.
  • Tang, X., Holland, D., Dale, A. M., Younes, L., Miller, M. I., and ADNI (2015), “The Diffeomorphometry of Regional Shape Change Rates and its Relevance to Cognitive Deterioration in Mild Cognitive Impairment and Alzheimer’s Disease,” Human Brain Mapping, 36, 2093–2117. DOI: 10.1002/hbm.22758.
  • Thompson, P. M., Hayashi, K. M., De Zubicaray, G. I., Janke, A. L., Rose, S. E., Semple, J., Hong, M. S., Herman, D. H., Gravano, D., Doddrell, D. M., and Toga, A. W. (2004), “Mapping Hippocampal and Ventricular Change in Alzheimer Disease,” NeuroImage, 22, 1754–1766. DOI: 10.1016/j.neuroimage.2004.03.040.
  • Tward, D. J., Sicat, C. S., Brown, T., Bakker, A., Gallagher, M., Albert, M., Miller, M., and ADNI (2017), “Entorhinal and Transentorhinal Atrophy in Mild Cognitive Impairment using Longitudinal Diffeomorphometry,” Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 9, 41–50. DOI: 10.1016/j.dadm.2017.07.005.
  • Vachon-Presseau, E., Tétreault, P., Petre, B., Huang, L., Berger, S. E., Torbey, S., Baria, A. T., Mansour, A. R., Hashmi, J. A., Griffith, J. W., Comasco, E., Schnitzer, T. J., Baliki, M. N., and Vania Apkarian, A. (2016), “Corticolimbic Anatomical Characteristics Predetermine Risk for Chronic Pain,” Brain, 139, 1958–1970. DOI: 10.1093/brain/aww100.
  • van Timmeren, J. E., Cester, D., Tanadini-Lang, S., Alkadhi, H., and Baessler, B. (2020), “Radiomics in Medical Imaging–“How-to” Guide and Critical Reflection,” Insights Into Imaging, 11, 1–16.
  • Wang, Y., Zhang, J., Gutman, B., Chan, T. F., Becker, J. T., Aizenstein, H. J., Lopez, O. L., Tamburo, R. J., Toga, A. W., and Thompson, P. M. (2010), “Multivariate Tensor-based Morphometry on Surfaces: Application to Mapping Ventricular Abnormalities in HIV/AIDS,” NeuroImage, 49, 2141–2157. DOI: 10.1016/j.neuroimage.2009.10.086.
  • Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green, R. C., Harvey, D., Jack, C. R., Jagust, W., Liu, E., Morris, J. C., Petersen, R. C., Saykin, A. J., Schmidt, M. E., Shaw, L., Siuciak, J. A., Soares, H., Toga, A. W., Trojanowski, J. Q., and Alzheimer’s Disease Neuroimaging Initiative. (2013), “The Alzheimer’s Disease Neuroimaging Initiative: A Review of Papers Published Since its Inception,” Alzheimer’s & Dementia, 9, e111–e194.
  • Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. A., Cairns, N. J., Green, R. C., Harvey, D., Jack Jr, C. R., Jagust, W., Morris, J. C., Petersen, R., Salazar, J., Saykin, A. J., Shaw, L. M., Toga, A. W., Trojanowski, J. Q., and Alzheimer’s Disease Neuroimaging Initiative (2017), “The Alzheimer’s Disease Neuroimaging Initiative 3: Continued Innovation for Clinical Trial Improvement,” Alzheimer’s & Dementia, 13, 561–571. DOI: 10.1016/j.jalz.2016.10.006.
  • Wood, S. (2012), “MGCV: Mixed GAM Computation Vehicle with GCV/AIC/REML Smoothness Estimation,” Software Package.
  • Yao, F., Müller, H.-G., and Wang, J.-L. (2005), “Functional Data Analysis for Sparse Longitudinal Data,” Journal of the American Statistical Association, 100, 577–590. DOI: 10.1198/016214504000001745.
  • Younes, L. (2010), Shapes and Diffeomorphisms, Berlin: Springer.
  • Zhang, Z., Klassen, E., and Srivastava, A. (2018a), “Phase-Amplitude Separation and Modeling of Spherical Trajectories,” Journal of Computational and Graphical Statistics, 27, 85–97. DOI: 10.1080/10618600.2017.1340892.
  • Zhang, Z., Su, J., Klassen, E., Le, H., and Srivastava, A. (2018b), “Rate-Invariant Analysis of Covariance Trajectories,” Journal of Mathematical Imaging and Vision, 60, 1306–1323. DOI: 10.1007/s10851-018-0814-0.
  • Zhao, Q., Pizer, S., Niethammer, M., and Rosenman, J. (2014), “Geometric-Feature-based Spectral Graph Matching in Pharyngeal Surface Registration,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, pp. 259–266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.