976
Views
3
CrossRef citations to date
0
Altmetric
Theory and Methods

Proximal Learning for Individualized Treatment Regimes Under Unmeasured Confounding

ORCID Icon, ORCID Icon & ORCID Icon
Pages 915-928 | Received 09 Jun 2021, Accepted 04 Nov 2022, Published online: 11 Jan 2023

References

  • Ai, C., and Chen, X. (2003), “Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions,” Econometrica, 71, 1795–1843.
  • Athey, S., and Wager, S. (2021), “Policy Learning with Observational Data,” Econometrica, 89, 133–161.
  • Athey, S., Imbens, G. W., and Wager, S. (2018), “Approximate Residual Balancing: Debiased Inference of Average Treatment Effects in High Dimensions,” Journal of the Royal Statistical Society, Series B, 80, 597–623.
  • Bickel, P. J. (1982), “On Adaptive Estimation,” Annals of Statistics, 10, 647–671.
  • Blundell, R., Chen, X., and Kristensen, D. (2007), “Semi-Nonparametric IV Estimation of Shape-Invariant Engel Curves,” Econometrica, 75, 1613–1669.
  • Chamberlain, G. (1992), “Efficiency Bounds for Semiparametric Regression,” Econometrica, 60, 567–596.
  • Chen, G., Zeng, D., and Kosorok, M. R. (2016), “Personalized Dose Finding using Outcome Weighted Learning,” Journal of the American Statistical Association, 111, 1509–1521. DOI: 10.1080/01621459.2016.1148611.
  • Chen, X. (2007), “Large Sample Sieve Estimation of Semi-Nonparametric Models,” Handbook of Econometrics, 6, 5549–5632.
  • Chen, X., and Pouzo, D. (2012), “Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Generalized Residuals,” Econometrica, 80, 277–321.
  • Chen, X., Chernozhukov, V., Lee, S., and Newey, W. K. (2014), “Local Identification of Nonparametric and Semiparametric Models,” Econometrica, 82, 785–809.
  • Chernozhukov, V., Chetverikov, D., and Kato, K. (2014), “Gaussian Approximation of Suprema of Empirical Processes,” Annals of Statistics, 42, 1564–1597.
  • Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins, J. (2018), “Double/Debiased Machine Learning for Treatment and Structural Parameters,” The Econometrics Journal, 21, 1–68.
  • Cobzaru, R., Welsch, R., Finkelstein, S., Ng, K., and Shahn, Z. (2022), “Bias Formulas for Violations of Proximal Identification Assumptions,” arXiv preprint arXiv:2208.00105.
  • Connors, Jr., A. F. J., Speroff, T., Dawson, N. V., Thomas, C., Harrell, Jr., F. E., Wagner, D., Desbiens, N., Goldman, L., Wu, A. W., Califf, R. M., Fulkerson, Jr., W. J., Vidaillet, H., Broste, S., Bellamy, P., Lynn, J., and Knaus, W. A. (1996), “The Effectiveness of Right Heart Catheterization in the Initial Care of Critically III Patients,” Journal of the American Medical Association, 276, 889–897.
  • Cui, Y., and Tchetgen Tchetgen, E. J. (2020), “A Semiparametric Instrumental Variable Approach to Optimal Treatment Regimes under Endogeneity,” Journal of the American Statistical Association, 116, 162–173.
  • Cui, Y., Pu, H., Shi, X., Miao, W., and Tchetgen Tchetgen, E. J. (2020), “Semiparametric Proximal Causal Inference,” arXiv preprint arXiv:2011.08411.
  • D’Haultfoeuille, X. (2011), “On the Completeness Condition in Nonparametric Instrumental Problems,” Econometric Theory, 27, 460–471.
  • Dikkala, N., Lewis, G., Mackey, L., and Syrgkanis, V. (2020), “Minimax Estimation of Conditional Moment Models,” arXiv preprint arXiv:2006.07201.
  • Dudík, M., Langford, J., and Li, L. (2011), “Doubly Robust Policy Evaluation and Learning,” arXiv preprint arXiv:1103.4601.
  • Ghassami, A., Ying, A., Shpitser, I., and Tchetgen Tchetgen, E. J. (2021), “Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals,” arXiv preprint arXiv:2104.02929.
  • Han, S. (2019), “Optimal Dynamic Treatment Regimes and Partial Welfare Ordering,” arXiv preprint arXiv:1912.10014.
  • Hernandez, G. A., Lemor, A., Blumer, V., Rueda, C. A., Zalawadiya, S., Stevenson, L. W., and Lindenfeld, J. (2019), “Trends in Utilization and Outcomes of Pulmonary Artery Catheterization in Heart Failure with and without Cardiogenic Shock,” Journal of Cardiac Failure, 25, 364–371. DOI: 10.1016/j.cardfail.2019.03.004.
  • Kallus, N., and Zhou, A. (2018), “Confounding-Robust Policy Improvement,” in Advances in Neural Information Processing Systems (Vol. 31).
  • Kallus, N., Mao, X., and Uehara, M. (2021), “Causal Inference Under Unmeasured Confounding With Negative Controls: A Minimax Learning Approach,” arXiv preprint arXiv:2103.14029.
  • Klasnja, P., Hekler, E. B., Shiffman, S., Boruvka, A., Almirall, D., Tewari, A., and Murphy, S. A. (2015), “Microrandomized Trials: An Experimental Design for Developing Just-in-Time Adaptive Interventions,” Health Psychology, 34, 1220–1228.
  • Kober, J., Bagnell, J. A., and Peters, J. (2013), “Reinforcement Learning in Robotics: A Survey,” The International Journal of Robotics Research, 32, 1238–1274.
  • Kosorok, M. R., and Laber, E. B. (2019), “Precision Medicine,” Annual Review of Statistics and Its Application, 6, 263–286. DOI: 10.1146/annurev-statistics-030718-105251.
  • Kress, R., Maz’ya, V., and Kozlov, V. (1989), Linear Integral Equations (Vol. 82), New York: Springer.
  • Kubiak, G. M., Ciarka, A., Biniecka, M., and Ceranowicz, P. (2019), “Right Heart Catheterization–Background, Physiological Basics, and Clinical Implications,” Journal of Clinical Medicine, 8, 1331.
  • Lin, D. Y., Psaty, B. M., and Kronmal, R. A. (1998), “Assessing the Sensitivity of Regression Results to Unmeasured Confounders in Observational Studies,” Biometrics, 54, 948–963.
  • Manski, C. F. (2004), “Statistical Treatment Rules for Heterogeneous Populations,” Econometrica, 72, 1221–1246.
  • Miao, W., and Tchetgen Tchetgen, E. J. (2018), “A Confounding Bridge Approach for Double Negative Control Inference on Causal Effects,” arXiv preprint arXiv:1808.04945.
  • Miao, W., Geng, Z., and Tchetgen Tchetgen, E. J. (2018), “Identifying Causal Effects with Proxy Variables of an Unmeasured Confounder,” Biometrika, 105, 987–993.
  • Newey, W. K., and Powell, J. L. (2003), “Instrumental Variable Estimation of Nonparametric Models,” Econometrica, 71, 1565–1578.
  • Pearl, J. (2009), Causality, Cambridge: Cambridge University Press.
  • Pu, H., and Zhang, B. (2020), “Estimating Optimal Treatment Rules with an Instrumental Variable: A Semi-Supervised Learning Approach,” arXiv preprint arXiv:2002.02579.
  • Qian, M., and Murphy, S. A. (2011), “Performance Guarantees for Individualized Treatment Rules,” Annals of Statistics, 39, 1180–1210.
  • Qiu, H., Carone, M., Sadikova, E., Petukhova, M., Kessler, R. C., and Luedtke, A. (2020), “Optimal Individualized Decision Rules using Instrumental Variable Methods,” Journal of the American Statistical Association, 116, 174–191. DOI: 10.1080/01621459.2020.1745814.
  • Rashid, N. U., Luckett, D. J., Chen, J., Lawson, M. T., Wang, L., Zhang, Y., Laber, E. B., Liu, Y., Yeh, J. J., Zeng, D., and Kosorok, M. R. (2020), “High-Dimensional Precision Medicine From Patient-Derived Xenografts,” Journal of the American Statistical Association, 116, 1140–1154. DOI: 10.1080/01621459.2020.1828091.
  • Robins, J. (1986), “A New Approach to Causal Inference in Mortality Studies with a Sustained Exposure Period–Application to Control of the Healthy worker survivor effect,” Mathematical Modelling, 7, 1393–1512.
  • Seong, K., Mohseni, M., and Cioffi, J. M. (2006), “Optimal Resource Allocation for OFDMA Downlink Systems,” in 2006 IEEE International Symposium on Information Theory, pp. 1394–1398, IEEE.
  • Shi, C., Fan, A., Song, R., and Lu, W. (2018), “High-Dimensional A-Learning for Optimal Dynamic Treatment Regimes,” Annals of Statistics, 46, 925–957. DOI: 10.1214/17-AOS1570.
  • Shi, X., Miao, W., Nelson, J. C., and Tchetgen Tchetgen, E. J. (2020), “Multiply Robust Causal Inference with Double-Negative Control Adjustment for Categorical Unmeasured Confounding,” Journal of the Royal Statistical Society, Series B, 82, 521–540.
  • Tan, Z. (2006), “A Distributional Approach for Causal Inference using Propensity Scores,” Journal of the American Statistical Association, 101, 1619–1637.
  • Tchetgen Tchetgen, E. J., Ying, A., Cui, Y., Shi, X., and Miao, W. (2020), “An Introduction to Proximal Causal Learning,” arXiv preprint arXiv:2009.10982.
  • Tehrani, B. N., Truesdell, A. G., Sherwood, M. W., Desai, S., Tran, H. A., Epps, K. C., Singh, R., Psotka, M., Shah, P., Cooper, L. B., Rosner, C., Raja, A., Barnett, S. D., Saulino, P., deFilippi, C. R., Gurbel, P. A., Murphy, C. E., and O’Connor, C. M. (2019), “Standardized Team-based Care for Cardiogenic Shock,” Journal of the American College of Cardiology, 73, 1659–1669.
  • Wang, L., and Tchetgen Tchetgen, E. (2018), “Bounded, Efficient and Multiply Robust Estimation of Average Treatment Effects using Instrumental Variables,” Journal of the Royal Statistical Society, Series B, 80, 531–550. DOI: 10.1111/rssb.12262.
  • Wang, L., Zhou, Y., Song, R., and Sherwood, B. (2018), “Quantile-Optimal Treatment Regimes,” Journal of the American Statistical Association, 113, 1243–1254.
  • Watkins, C. J., and Dayan,P. (1992), “Q-learning,” Machine Learning, 8, 279–292.
  • Wong, R. K., and Chan, K. C. G. (2017), “Kernel-based Covariate Functional Balancing for Observational Studies,” Biometrika, 105, 199–213. DOI: 10.1093/biomet/asx069.
  • Yang, T., Li, Y.-F., Mahdavi, M., Jin, R., and Zhou, Z.-H. (2012), “Nyström Method vs Random Fourier Features: A Theoretical and Empirical Comparison,” Advances in Neural Information Processing Systems, 25, 476–484.
  • Zhang, B., Tsiatis, A. A., Laber, E. B., and Davidian, M. (2012), “A Robust Method for Estimating Optimal Treatment Regimes,” Biometrics, 68, 1010–1018. DOI: 10.1111/j.1541-0420.2012.01763.x.
  • Zhao, Y., Kosorok, M. R., and Zeng, D. (2009), “Reinforcement Learning Design for Cancer Clinical Trials,” Statistics in Medicine, 28, 3294–3315.
  • Zhao, Y., Zeng, D., Rush, A. J., and Kosorok, M. R. (2012), “Estimating Individualized Treatment Rules using Outcome Weighted Learning,” Journal of the American Statistical Association, 107, 1106–1118. DOI: 10.1080/01621459.2012.695674.
  • Zhao, Y.-Q., Zeng, D., Laber, E. B., Song, R., Yuan, M., and Kosorok, M. R. (2014), “Doubly Robust Learning for Estimating Individualized Treatment with Censored Data,” Biometrika, 102, 151–168.
  • Zhao, Y.-Q., Laber, E. B., Ning, Y., Saha, S., and Sands, B. E. (2019), “Efficient Augmentation and Relaxation Learning for Individualized Treatment Rules using Observational Data,” Journal of Machine Learning Research, 20, 1–23.
  • Zhou, X., Mayer-Hamblett, N., Khan, U., and Kosorok, M. R. (2017), “Residual Weighted Learning for Estimating Individualized Treatment Rules,” Journal of the American Statistical Association, 112, 169–187. DOI: 10.1080/01621459.2015.1093947.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.