2,238
Views
1
CrossRef citations to date
0
Altmetric
Theory and Methods

Higher-Order Least Squares: Assessing Partial Goodness of Fit of Linear Causal Models

ORCID Icon, ORCID Icon &
Pages 1019-1031 | Received 24 Nov 2021, Accepted 29 Nov 2022, Published online: 24 Feb 2023

References

  • Angrist, J. D., Imbens, G. W., and Rubin, D. B. (1996), “Identification of Causal Effects using Instrumental Variables,” Journal of the American Statistical Association, 91, 444–455. DOI: 10.1080/01621459.1996.10476902.
  • Belsley, D. A., Kuh, E., and Welsch, R. E. (2005), Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, Hoboken, NJ: Wiley.
  • Bowden, R. J., and Turkington, D. A. (1990), Instrumental Variables, Cambridge: Cambridge University Press.
  • Bühlmann, P. (2013), “Statistical Significance in High-Dimensional Linear Models,” Bernoulli, 19, 1212–1242. DOI: 10.3150/12-BEJSP11.
  • Buja, A., Brown, L., Berk, R., George, E., Pitkin, E., Traskin, M., Zhang, K., and Zhao, L. (2019a), “Models as Approximations I: Consequences Illustrated with Linear Regression,” Statistical Science, 34, 523–544. DOI: 10.1214/18-STS693.
  • Buja, A., Brown, L., Kuchibhotla, A. K., Berk, R., George, E., and Zhao, L. (2019b), “Models as Approximations II: A Model-Free Theory of Parametric Regression,” Statistical Science, 34, 545–565. DOI: 10.1214/18-STS694.
  • Ćevid, D., Bühlmann, P., and Meinshausen, N. (2020), “Spectral Deconfounding via Perturbed Sparse Linear Models,” Journal of Machine Learning Research, 21, 9442–9482.
  • Godfrey, L. G. (1991), Misspecification Tests in Econometrics: The Lagrange Multiplier Principle and Other Approaches, Cambridge: Cambridge University Press.
  • Greene, W. H. (2003), Econometric Analysis, Noida: Pearson Education India.
  • Guo, Z., Ćevid, D., and Bühlmann, P. (2022), “Doubly Debiased Lasso: High-Dimensional Inference Under Hidden Confounding,” Annals of Statistics, 50, 1320–1347. DOI: 10.1214/21-aos2152.
  • Hausman, J. A. (1978), “Specification Tests in Econometrics,” Econometrica: Journal of the Econometric Society, 46, 1251–1271. DOI: 10.2307/1913827.
  • Hoyer, P. O., Hyvärinen, A., Scheines, R., Spirtes, P., Ramsey, J., Lacerda, G., and Shimizu, S. (2008), “Causal Discovery of Linear Acyclic Models with Arbitrary Distributions,” in Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, pp. 282–289.
  • Hyvärinen, A., and Oja, E. (2000), “Independent Component Analysis: Algorithms and Applications,” Neural Networks, 13, 411–430. DOI: 10.1016/s0893-6080(00)00026-5.
  • Imbens, G. W., and Rubin, D. B. (2015), Causal Inference in Statistics, Social, and Biomedical Sciences, New York: Cambridge University Press.
  • Lehmann, E. L., Romano, J. P., and Casella, G. (2005), Testing Statistical Hypotheses (Vol. 3), Cham: Springer.
  • Maddala, G., and Lahiri, K. (2009), Introduction to Econometrics (4th ed), Chichester: Wiley.
  • Meinshausen, N., Hauser, A., Mooij, J. M., Peters, J., Versteeg, P., and Bühlmann, P. (2016), “Methods for Causal Inference from Gene Perturbation Experiments and Validation,” Proceedings of the National Academy of Sciences, 113, 7361–7368. DOI: 10.1073/pnas.1510493113.
  • Mooij, J. M., and Heskes, T. (2013), “Cyclic Causal Discovery from Continuous Equilibrium Data,” in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence, pp. 431–439.
  • Peters, J., Bühlmann, P., and Meinshausen, N. (2016), “Causal Inference by using Invariant Prediction: Identification and Confidence Intervals,” Journal of the Royal Statistical Society, Series B, 78, 947–1012. DOI: 10.1111/rssb.12167.
  • Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B. (2014), “Causal Discovery with Continuous Additive Noise Models,” Journal of Machine Learning Research, 15, 2009–2053.
  • Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005), “Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data,” Science, 308, 523–529. DOI: 10.1126/science.1105809.
  • Shah, R. D., and Bühlmann, P. (2018), “Goodness-of-Fit Tests for High Dimensional Linear Models,” Journal of the Royal Statistical Society, Series B, 80, 113–135. DOI: 10.1111/rssb.12234.
  • Shimizu, S., Hoyer, P. O., Hyvärinen, A., Kerminen, A., and Jordan, M. (2006), “A Linear Non-Gaussian Acyclic Model for Causal Discovery,” Journal of Machine Learning Research, 7, 2003–2030.
  • Taeb, A., Gamella, J. L., Heinze-Deml, C., and Bühlmann, P. (2021), “Perturbations and Causality in Gaussian Latent Variable Models,” arXiv preprint arXiv:2101.06950.
  • van de Geer, S., Bühlmann, P., Ritov, Y., and Dezeure, R. (2014), “On Asymptotically Optimal Confidence Regions and Tests for High-Dimensional Models,” The Annals of Statistics, 42, 1166–1202. DOI: 10.1214/14-AOS1221.
  • Wang, Y. S., and Drton, M. (2020), “High-Dimensional Causal Discovery under Non-Gaussianity,” Biometrika, 107, 41–59. DOI: 10.1093/biomet/asz055.
  • Zhang, C.-H., and Zhang, S. S. (2014), “Confidence Intervals for Low Dimensional Parameters in High Dimensional Linear Models,” Journal of the Royal Statistical Society, Series B, 76, 217–242. DOI: 10.1111/rssb.12026.