510
Views
0
CrossRef citations to date
0
Altmetric
Applications and Case Studies

Estimating Cell-Type-Specific Gene Co-Expression Networks from Bulk Gene Expression Data with an Application to Alzheimer’s Disease

ORCID Icon, ORCID Icon & ORCID Icon
Pages 811-824 | Received 17 Jan 2022, Accepted 13 Dec 2023, Published online: 31 Jan 2024

References

  • Abbas, A. R., Wolslegel, K., Seshasayee, D., Modrusan, Z., and Clark, H. F. (2009), “Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus,” PloS One, 4, e6098. DOI: 10.1371/journal.pone.0006098.
  • Alzheimer’s Association. (2019), “2019 Alzheimer’s Disease Facts and Figures,” Alzheimer’s & Dementia, 15, 321–387.
  • Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., et al. (2000), “Gene Ontology: Tool for the Unification of Biology,” Nature Genetics, 25, 25–29. DOI: 10.1038/75556.
  • Bennett, D. A., Buchman, A. S., Boyle, P. A., Barnes, L. L., Wilson, R. S., and Schneider, J. A. (2018), “Religious Orders Study and Rush Memory and Aging Project,” Journal of Alzheimer’s Disease, 64, S161–S189. DOI: 10.3233/JAD-179939.
  • Bickel, P. J., and Levina, E. (2008a), “Covariance Regularization by Thresholding,” The Annals of Statistics, 36, 2577–2604. DOI: 10.1214/08-AOS600.
  • ——- (2008b), “Regularized Estimation of Large Covariance Matrices,” The Annals of Statistics, 36, 199–227.
  • Cai, T., Liu, W., and Luo, X. (2011), “A constrained l1 minimization approach to sparse precision matrix estimation,” Journal of the American Statistical Association, 106, 594–607. DOI: 10.1198/jasa.2011.tm10155.
  • Cai, Z., and Xiao, M. (2016), “Oligodendrocytes and Alzheimer’s Disease,” International Journal of Neuroscience, 126, 97–104. DOI: 10.3109/00207454.2015.1025778.
  • Chu, T., Wang, Z., Pe’er, D., and Danko, C. G. (2022), “Cell Type and Gene Expression Deconvolution with BayesPrism Enables Bayesian Integrative Analysis Across Bulk and Single-Cell RNA Sequencing in Oncology,” Nature Cancer, 3, 505–517. DOI: 10.1038/s43018-022-00356-3.
  • Cobos, F. A., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P., and De Preter, K. (2020), “Benchmarking of Cell Type Deconvolution Pipelines for Transcriptomics Data,” Nature Communications, 11, 1–14. DOI: 10.1038/s41467-020-20288-9.
  • Consortium, T. G. O. (2021), “The Gene Ontology Resource: Enriching a GOld Mine,” Nucleic Acids Research, 49, D325–D334. DOI: 10.1093/nar/gkaa1113.
  • Dai, H., Li, L., Zeng, T., and Chen, L. (2019), “Cell-Specific Network Constructed by Single-Cell RNA Sequencing Data,” Nucleic Acids Research, 47, e62. DOI: 10.1093/nar/gkz172.
  • De Strooper, B., and Karran, E. (2016), “The Cellular Phase of Alzheimer’s Disease,” Cell, 164, 603–615. DOI: 10.1016/j.cell.2015.12.056.
  • Deming, Y., Filipello, F., Cignarella, F., Cantoni, C., Hsu, S., Mikesell, R., Li, Z., Del-Aguila, J. L., Dube, U., Farias, F. G., et al. (2019), “The MS4A Gene Cluster is a Key Modulator of Soluble TREM2 and Alzheimer’s Disease Risk,” Science Translational Medicine, 11, eaau2291. DOI: 10.1126/scitranslmed.aau2291.
  • Denisenko, E., Guo, B. B., Jones, M., Hou, R., De Kock, L., Lassmann, T., Poppe, D., Clément, O., Simmons, R. K., Lister, R., et al. (2020), “Systematic Assessment of Tissue Dissociation and Storage Biases in Single-Cell and Single-Nucleus RNA-Seq Workflows,” Genome Biology, 21, 1–25. DOI: 10.1186/s13059-020-02048-6.
  • Dong, M., Thennavan, A., Urrutia, E., Li, Y., Perou, C. M., Zou, F., and Jiang, Y. (2021), “SCDC: Bulk Gene Expression Deconvolution by Multiple Single-Cell RNA Sequencing References,” Briefings in Bioinformatics, 22, 416–427. DOI: 10.1093/bib/bbz166.
  • El Karoui, N. (2008), “Operator Norm Consistent Estimation of Large-Dimensional Sparse Covariance Matrices,” The Annals of Statistics, 36, 2717–2756. DOI: 10.1214/07-AOS559.
  • Fan, J., and Li, R. (2001), “Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties,” Journal of the American statistical Association, 96, 1348–1360. DOI: 10.1198/016214501753382273.
  • Fujita, M., Gao, Z., Zeng, L., McCabe, C., White, C. C., Ng, B., Green, G. S., Rozenblatt-Rosen, O., Phillips, D., Amir-Zilberstein, L., et al. (2022), “Cell-Subtype Specific Effects of Genetic Variation in the Aging and Alzheimer Cortex,” bioRxiv, 2022–11.
  • Gaiteri, C., Ding, Y., French, B., Tseng, G. C., and Sibille, E. (2014), “Beyond Modules and Hubs: The Potential of Gene Coexpression Networks for Investigating Molecular Mechanisms of Complex Brain Disorders,” Genes, Brain and Behavior, 13, 13–24. DOI: 10.1111/gbb.12106.
  • Griciuc, A., Serrano-Pozo, A., Parrado, A. R., Lesinski, A. N., Asselin, C. N., Mullin, K., Hooli, B., Choi, S. H., Hyman, B. T., and Tanzi, R. E. (2013), “Alzheimer’s Disease Risk Gene CD33 Inhibits Microglial Uptake of Amyloid Beta,” Neuron, 78, 631–643. DOI: 10.1016/j.neuron.2013.04.014.
  • Heintzman, N. D., Hon, G. C., Hawkins, R. D., Kheradpour, P., Stark, A., Harp, L. F., Ye, Z., Lee, L. K., Stuart, R. K., Ching, C. W., et al. (2009), “Histone Modifications at Human Enhancers Reflect Global Cell-Type-Specific Gene Expression,” Nature, 459, 108–112. DOI: 10.1038/nature07829.
  • Heneka, M. T., Carson, M. J., El Khoury, J., Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., et al. (2015), “Neuroinflammation in Alzheimer’s Disease,” The Lancet Neurology, 14, 388–405. DOI: 10.1016/S1474-4422(15)70016-5.
  • Huang, P., Cai, M., Lu, X., McKennan, C., and Wang, J. (2023), “Accurate Estimation of Rare Cell Type Fractions from Tissue Omics Data via Hierarchical Deconvolution,” bioRxiv, 2023–03.
  • Hwang, B., Lee, J. H., and Bang, D. (2018), “Single-Cell RNA Sequencing Technologies and Bioinformatics Pipelines,” Experimental & Molecular Medicine, 50, 1–14. DOI: 10.1038/s12276-018-0071-8.
  • Jew, B., Alvarez, M., Rahmani, E., Miao, Z., Ko, A., Garske, K. M., Sul, J. H., Pietiläinen, K. H., Pajukanta, P., and Halperin, E. (2020), “Accurate Estimation of Cell Composition in Bulk Expression through Robust Integration of Single-Cell Information,” Nature Communications, 11, 1–11. DOI: 10.1038/s41467-020-16607-9.
  • Jiang, B. (2013), “Covariance Selection by Thresholding the Sample Correlation Matrix,” Statistics & Probability Letters, 83, 2492–2498. DOI: 10.1016/j.spl.2013.07.008.
  • Kiselev, V. Y., Andrews, T. S., and Hemberg, M. (2019), “Challenges in Unsupervised Clustering of Single-Cell RNA-Seq Data,” Nature Reviews Genetics, 20, 273–282. DOI: 10.1038/s41576-018-0088-9.
  • Kosoy, R., Fullard, J., Zeng, B., Bendl, J., Dong, P., Rahman, S., Kleopoulos, S., Shao, Z., Humphrey, J., de Paiva Lopes, K., et al. (2021), “Genetics of the Human Microglia Regulome Refines Alzheimer’s Disease Risk Loci,” medRxiv.
  • Langfelder, P., and Horvath, S. (2008), “WGCNA: An R Package for Weighted Correlation Network Analysis,” BMC Bioinformatics, 9, 1–13. DOI: 10.1186/1471-2105-9-559.
  • Li, B., Severson, E., Pignon, J.-C., Zhao, H., Li, T., Novak, J., Jiang, P., Shen, H., Aster, J. C., Rodig, S., et al. (2016), “Comprehensive Analyses of Tumor Immunity: Implications for Cancer Immunotherapy,” Genome Biology, 17, 1–16. DOI: 10.1186/s13059-016-1028-7.
  • Love, M. I., Huber, W., and Anders, S. (2014), “Moderated Estimation of Fold Change and Dispersion for RNA-seq Data with DESeq2,” Genome Biology, 15, 1–21. DOI: 10.1186/s13059-014-0550-8.
  • Lu, S., and Keles, S. (2023), “Debiased Personalized Gene Coexpression Networks for Population-Scale scRNA-seq Data,” Genome Research, gr–277363. DOI: 10.1101/gr.277363.122.
  • Mathys, H., Davila-Velderrain, J., Peng, Z., Gao, F., Mohammadi, S., Young, J. Z., Menon, M., He, L., Abdurrob, F., Jiang, X., et al. (2019), “Single-Cell Transcriptomic Analysis of Alzheimer’s Disease,” Nature, 570, 332–337. DOI: 10.1038/s41586-019-1195-2.
  • Meng, G., and Mei, H. (2019), “Transcriptional Dysregulation Study Reveals a Core Network Involving the Progression of Alzheimer’s Disease,” Frontiers in Aging Neuroscience, 11, 101. DOI: 10.3389/fnagi.2019.00101.
  • Morabito, S., Miyoshi, E., Michael, N., Shahin, S., Martini, A. C., Head, E., Silva, J., Leavy, K., Perez-Rosendahl, M., and Swarup, V. (2021), “Single-Nucleus Chromatin Accessibility and Transcriptomic Characterization of Alzheimer’s Disease,” Nature Genetics, 53, 1143–1155. DOI: 10.1038/s41588-021-00894-z.
  • Mostafavi, S., Gaiteri, C., Sullivan, S. E., White, C. C., Tasaki, S., Xu, J., Taga, M., Klein, H.-U., Patrick, E., Komashko, V., et al. (2018), “A Molecular Network of the Aging Human Brain Provides Insights into the Pathology and Cognitive Decline of Alzheimer’s Disease,” Nature Neuroscience, 21, 811–819. DOI: 10.1038/s41593-018-0154-9.
  • Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., Hoang, C. D., Diehn, M., and Alizadeh, A. A. (2015), “Robust Enumeration of Cell Subsets from Tissue Expression Profiles,” Nature Methods, 12, 453–457. DOI: 10.1038/nmeth.3337.
  • Newman, A. M., Steen, C. B., Liu, C. L., Gentles, A. J., Chaudhuri, A. A., Scherer, F., Khodadoust, M. S., Esfahani, M. S., Luca, B. A., Steiner, D., et al. (2019), “Determining Cell Type Abundance and Expression from Bulk Tissues with Digital Cytometry,” Nature Biotechnology, 37, 773–782. DOI: 10.1038/s41587-019-0114-2.
  • Pimenova, A. A., Raj, T., and Goate, A. M. (2018), “Untangling Genetic Risk for Alzheimer’s Disease,” Biological Psychiatry, 83, 300–310. DOI: 10.1016/j.biopsych.2017.05.014.
  • Qi, H., and Sun, D. (2006), “A Quadratically Convergent Newton Method for Computing the Nearest Correlation Matrix,” SIAM Journal on Matrix Analysis and Applications, 28, 360–385. DOI: 10.1137/050624509.
  • Rothman, A. J., Bickel, P. J., Levina, E., and Zhu, J. (2008), “Sparse Permutation Invariant Covariance Estimation,” Electronic Journal of Statistics, 2, 494–515. DOI: 10.1214/08-EJS176.
  • Rothman, A. J., Levina, E., and Zhu, J. (2009), “Generalized Thresholding of Large Covariance Matrices,” Journal of the American Statistical Association, 104, 177–186. DOI: 10.1198/jasa.2009.0101.
  • Sims, R., Hill, M., and Williams, J. (2020), “The Multiplex Model of the Genetics of Alzheimer’s Disease,” Nature Neuroscience, 23, 311–322. DOI: 10.1038/s41593-020-0599-5.
  • Sims, R., Van Der Lee, S. J., Naj, A. C., Bellenguez, C., Badarinarayan, N., Jakobsdottir, J., Kunkle, B. W., Boland, A., Raybould, R., Bis, J. C., et al. (2017), “Rare Coding Variants in PLCG2, ABI3, and TREM2 Implicate Microglial-Mediated Innate Immunity in Alzheimer’s Disease,” Nature Genetics, 49, 1373–1384. DOI: 10.1038/ng.3916.
  • Skene, N. G., and Grant, S. G. (2016), “Identification of Vulnerable Cell Types in Major Brain Disorders Using Single Cell Transcriptomes and Expression Weighted Cell Type Enrichment,” Frontiers in Neuroscience, 10, 16. DOI: 10.3389/fnins.2016.00016.
  • Stower, H. (2019), “Single-Cell Insights into Neurology,” Nature Medicine, 25, 1799–1799. DOI: 10.1038/s41591-019-0686-x.
  • Su, C., Xu, Z., Shan, X., Cai, B., Zhao, H., and Zhang, J. (2022), “Cell-Type-Specific Co-Expression Inference from Single Cell RNA-Sequencing Data,” Nature Communications, 14, 4846. DOI: 10.1038/s41467-023-40503-7.
  • Sun, T., Song, D., Li, W. V., and Li, J. J. (2021), “scDesign2: A Transparent Simulator that Generates High-Fidelity Single-Cell Gene Expression Count Data with Gene Correlations Captured,” Genome Biology, 22, 1–37. DOI: 10.1186/s13059-021-02367-2.
  • Sun, Y., and Vandenberghe, L. (2015), “Decomposition Methods for Sparse Matrix Nearness Problems,” SIAM Journal on Matrix Analysis and Applications, 36, 1691–1717. DOI: 10.1137/15M1011020.
  • Tang, D., Park, S., and Zhao, H. (2020), “NITUMID: Nonnegative Matrix Factorization-based Immune-TUmor MIcroenvironment Deconvolution,” Bioinformatics, 36, 1344–1350. DOI: 10.1093/bioinformatics/btz748.
  • Tansey, K. E., Cameron, D., and Hill, M. J. (2018), “Genetic Risk for Alzheimer’s Disease is Concentrated in Specific Macrophage and Microglial Transcriptional Networks,” Genome Medicine, 10, 1–10. DOI: 10.1186/s13073-018-0523-8.
  • Tian, J., Wang, J., and Roeder, K. (2021), “ESCO: Single Cell Expression Simulation Incorporating Gene Co-Expression,” Bioinformatics, 37, 2374–2381. DOI: 10.1093/bioinformatics/btab116.
  • Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., Salzberg, S. L., Wold, B. J., and Pachter, L. (2010), “Transcript Assembly and Quantification by RNA-Seq Reveals Unannotated Transcripts and Isoform Switching During Cell Differentiation,” Nature Biotechnology, 28, 511–515. DOI: 10.1038/nbt.1621.
  • Wan, Y.-W., Al-Ouran, R., Mangleburg, C. G., Perumal, T. M., Lee, T. V., Allison, K., Swarup, V., Funk, C. C., Gaiteri, C., Allen, M., et al. (2020), “Meta-Analysis of the Alzheimer’s Disease Human Brain Transcriptome and Functional Dissection in Mouse Models,” Cell Reports, 32, 107908. DOI: 10.1016/j.celrep.2020.107908.
  • Wang, J., Roeder, K., and Devlin, B. (2021), “Bayesian Estimation of Cell Type-Specific Gene Expression with Prior Derived from Single-Cell Data,” Genome Research, gr–268722. DOI: 10.1101/gr.268722.120.
  • Wang, M., Li, A., Sekiya, M., Beckmann, N. D., Quan, X., Schrode, N., Fernando, M. B., Yu, A., Zhu, L., Cao, J., et al. (2021a), “Transformative Network Modeling of Multi-Omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer’s Disease,” Neuron, 109, 257–272. DOI: 10.1016/j.neuron.2020.11.002.
  • Wang, M., Roussos, P., McKenzie, A., Zhou, X., Kajiwara, Y., Brennand, K. J., De Luca, G. C., Crary, J. F., Casaccia, P., Buxbaum, J. D., et al. (2016), “Integrative Network Analysis of Nineteen Brain Regions Identifies Molecular Signatures and Networks Underlying Selective Regional Vulnerability to Alzheimer’s Disease,” Genome Medicine, 8, 1–21. DOI: 10.1186/s13073-016-0355-3.
  • Wang, W., Yao, J., Wang, Y., Zhang, C., Tao, W., Zou, J., and Ni, T. (2021b), “Improved Estimation of Cell Type-Specific Gene Expression through Deconvolution of Bulk Tissues with Matrix Completion,” bioRxiv, 2021–06.
  • Wang, X., Choi, D., and Roeder, K. (2021), “Constructing Local Cell-Specific Networks from Single-Cell Data,” Proceedings of the National Academy of Sciences, 118, e2113178118. DOI: 10.1073/pnas.2113178118.
  • Wang, X., Park, J., Susztak, K., Zhang, N. R., and Li, M. (2019), “Bulk Tissue Cell Type Deconvolution with Multi-Subject Single-Cell Expression Reference,” Nature Communications, 10, 1–9. DOI: 10.1038/s41467-018-08023-x.
  • Winblad, B., Amouyel, P., Andrieu, S., Ballard, C., Brayne, C., Brodaty, H., Cedazo-Minguez, A., Dubois, B., Edvardsson, D., Feldman, H., et al. (2016), “Defeating Alzheimer’s Disease and Other Dementias: A Priority for European Science and Society,” The Lancet Neurology, 15, 455–532. DOI: 10.1016/S1474-4422(16)00062-4.
  • Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C.-C., and Bu, G. (2019), “Apolipoprotein E and Alzheimer Disease: Pathobiology and Targeting Strategies,” Nature Reviews Neurology, 15, 501–518. DOI: 10.1038/s41582-019-0228-7.
  • Yang, T., Alessandri-Haber, N., Fury, W., Schaner, M., Breese, R., LaCroix-Fralish, M., Kim, J., Adler, C., Macdonald, L. E., Atwal, G. S., et al. (2021), “AdRoit is An Accurate and Robust Method to Infer Complex Transcriptome Composition,” Communications Biology, 4, 1–14. DOI: 10.1038/s42003-021-02739-1.
  • Zhang, B., Gaiteri, C., Bodea, L.-G., Wang, Z., McElwee, J., Podtelezhnikov, A. A., Zhang, C., Xie, T., Tran, L., Dobrin, R., et al. (2013), “Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease,” Cell, 153, 707–720. DOI: 10.1016/j.cell.2013.03.030.
  • Zhang, B., and Horvath, S. (2005), “A General Framework for Weighted Gene Co-expression Network Analysis,” Statistical Applications in Genetics and Molecular Biology, 4. DOI: 10.2202/1544-6115.1128.
  • Zhong, Y., and Liu, Z. (2012), “Gene Expression Deconvolution in Linear Space,” Nature Methods, 9, 8–9. DOI: 10.1038/nmeth.1830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.