522
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Markov Bases: A 25 Year Update

, &
Pages 1671-1686 | Received 30 Jun 2023, Accepted 16 Jan 2024, Published online: 08 Mar 2024

References

  • 4ti2 team. 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces. Available at https://4ti2.github.io.
  • Agresti, A. (2002). Categorical Data Analysis. Wiley Series in Probability and Statistics, Hoboken, NJ: Wiley.
  • Andersen, E. B. (1980), Discrete Statistical Models with Social Science Applications, New York: Elsevier.
  • Andersen, H. C. and Diaconis, P. (2007), “Hit and Run as a Unifying Device,” Journal de la Société française de statistique & Revue de statistique appliquée, 148, 5–28.
  • Aoki, S., and Takemura, A. (2003a), “Minimal Basis for a Connected Markov Chain over 3×3×k Contingency Tables with Fixed Two-Dimensional Marginals,” Australian & New Zealand Journal of Statistics, 45, 229–249.
  • ———(2003b), “The List of Indispensable Moves of the Unique Minimal Markov Basis for 3×4×k and 4×4×4 Contingency Tables with Fixed Two-Dimensional Marginal.” Technical Report METR 03-38.
  • Aoki, S., Takemura, A., and Yoshida, R. (2008), “Indispensable Monomials of Toric Ideals and Markov Bases,” Journal of Symbolic Computation, 43, 490–507. DOI: 10.1016/j.jsc.2007.07.012.
  • Aoki, S., Hara, H., and Takemura, A. (2012), Markov Bases in Algebraic Statistics, Springer Series in Statistics, New York: Springer.
  • Bacallado, S., Diaconis, P., and Holmes, S. (2015), “de Finetti Priors Using Markov Chain Monte Carlo Computations,” Statistics and Computing, 25, 797–808. DOI: 10.1007/s11222-015-9562-9.
  • Bakenhus, M., and Petrović, S. “Sampling Lattice Points in a Polytope: A bayesian Biased Algorithm with Random Updates,” Algebraic Statistics, to appear.
  • Barndorff-Nielsen, O. (1978), Information and Exponential Families: In Statistical Theory, volume Reprinted in 2014. Wiley Series in Probability and Statistics, Hoboken, NJ: Wiley.
  • Bernstein, D., and O’Neill, C. (2017), “Unimodular Hierarchical Models and their Graver Bases,” Journal of Algebraic Statistics, 8, 29–43. DOI: 10.18409/jas.v8i2.66.
  • Bernstein, D., and Sullivant, S. (2017), “Unimodular Binary Hierarchical Models,” Journal of Combinatorial Theory, Series B, 123, 97–125. DOI: 10.1016/j.jctb.2016.11.003.
  • Berstein, Y., and Onn, S. (2009), “The Graver Complexity of Integer Programming,” Annals of Combinatorics, 13, 289–296. DOI: 10.1007/s00026-009-0029-6.
  • Besag, J., and Clifford, P. (1989), “Generalized Monte Carlo Significance Tests,” Biometrika, 76, 633–642. DOI: 10.1093/biomet/76.4.633.
  • Besag, J., and Mondal, D. (2013), “Exact Goodness-of-Fit Tests for Markov Chains,” Biometrics, 69, 488–496. DOI: 10.1111/biom.12009.
  • Bunea, F., and Besag, J. (2000), “MCMC in i×j×k Contingency Tables,” Fields Institute Communications, 26, 1–13.
  • Campo, A. M. D., Cepeda, S., and Uhler, C. (2017), “Exact Goodness-of-Fit Testing for the Ising Model,” Scandinavian Journal of Statistics, 44, 285–306. DOI: 10.1111/sjos.12251.
  • Chen, Y. (2007), “Conditional Inference on Tables with Structural Zeros,” Journal of Computational and Graphical Statistics, 16, 445–467. DOI: 10.1198/106186007X209226.
  • Chen, Y., Dinwoodie, I., and Dobra, A. (2005), “Lattice Points, Contingency Tables, and Sampling,” Contemporary Mathematics (Vol. 374), Providence, RI: American Mathematical Society.
  • Cox, D. A., Little, J. B., and O’Shea, D. (2015), Ideals, Varieties, and Algorithms (4th ed.), Cham: Springer.
  • Cslovjecsek, J., Eisenbrand, F., Hunkenschröder, C., Rohwedder, L., and Weismantel, R. (2021), “Block-Structured Integer and Linear Programming in Strongly Polynomial and Near Linear Time,” in Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’21, pp. 1666–1681, Society for Industrial and Applied Mathematics.
  • Cslovjecsek, J., Koutecký, M., Lassota, A., Pilipczuk, M., and Polak, A. (2023), “Parameterized Algorithms for Block-Structured Integer Programs with Large Entries,” to appear in SODA 2024. Available at arXiv:2311.01890.
  • De Loera, J., and Onn, S. (2006a), “Markov Bases of Three-Way Tables are Arbitrarily Complicated,” Journal of Symbolic Computation, 41, 173–181. DOI: 10.1016/j.jsc.2005.04.010.
  • De Loera, J. A., and Onn, S. (2006b), “All Linear and Integer Programs are Slim 3-Way Transportation Programs,” SIAM Journal on Optimization, 17, 806–821. DOI: 10.1137/040610623.
  • De Loera, J. A., Hemmecke, R., Onn, S., and Weismantel, R. (2008), “N-fold Integer Programming,” Discrete Optimization, 5, 231–241. DOI: 10.1016/j.disopt.2006.06.006.
  • Diaconis, P. (2022a), “Partial Exchangeability for Contingency Tables,” Mathematics, 10, 442. DOI: 10.3390/math10030442.
  • ——— (2022b), “Approximate Exchangeability and De Finetti Priors in 2022,” Scandinavian Journal of Statistics, 50, 38–53.
  • Diaconis, P., and Eriksson, N. (2006), “Markov Bases for Noncommutative Fourier Analysis of Ranked Data,” Journal of Symbolic Computation, 41, 182–195. DOI: 10.1016/j.jsc.2005.04.009.
  • Diaconis, P., and Sturmfels, B. (1998), “Algebraic Algorithms for Sampling from Conditional Distributions,” Annals of Statistics, 26, 363–397.
  • Diaconis, P., Holmes, S., and Shahshahani, M. (2013), “Sampling from a Manifold,” Institute of Mathematical Statistics, 10, 102–125.
  • Dobra, A. (2003), “Markov Bases for Decomposable Graphical Models,” Bernoulli, 9, 1093–1108. DOI: 10.3150/bj/1072215202.
  • ——— (2012), “Dynamic Markov Bases,” Journal of Computational and Graphical Statistics, 21, 496–517.
  • Dobra, A., and Sullivant, S. (2004), “A Divide-and-Conquer Algorithm for Generating Markov Bases of Multi-Way Tables,” Computational Statistics, 19, 347–366. DOI: 10.1007/BF03372101.
  • Dobra, A., Fienberg, S. E., Rinaldo, A., Slavković, A., and Zhou, Y. (2008), “Algebraic Statistics and Contingency Table Problems: Log-Linear Models, Likelihood Estimation and Disclosure Limitation,” in In IMA Volumes in Mathematics and its Applications: Emerging Applications of Algebraic Geometry, pp. 63–88, New York: Springer.
  • Drton, M., Sturmfels, B., and Sullivant, S. (2009), Lectures on Algebraic Statistics, volume 39 of Oberwolfach Seminars, Basel: Birkhäuser.
  • Eisenbrand, F., Hunkenschröder, C., Klein, K.-M., Koutecký, M., Levin, A., and Onn, S. (2022), “An Algorithmic Theory of Integer Programming,” Available at arXiv:1904.01361.
  • Engström, A., Kahle, T., and Sullivant, S. (2014), “Multigraded Commutative Algebra of Graph Decompositions,” Journal of Algebraic Combinatorics, 39, 335–372. DOI: 10.1007/s10801-013-0450-0.
  • Fienberg, S. E. (1980), The Analysis of Cross-Classified Categorical Data, New York: Springer, Reprinted 2007.
  • Fienberg, S. E., and Wasserman, S. S. (1981), “Categorical Data Analysis of Single Sociometric Relations,” Sociological Methodology, 12, 156–192. DOI: 10.2307/270741.
  • Fienberg, S. E., Petrović, S., and Rinaldo, A. (2010), Algebraic Statistics for p1 Random Graph Models: Markov Bases and their Uses, volume Papers in Honor of Paul W. Holland, ETS, Springer.
  • Geiger, D., Meek, C., and Sturmfels, B. (2006), “On the Toric Algebra of Graphical Models,” Annals of Statistics, 34, 1463–1492.
  • Goldenberg, A., Zheng, A. X., Fienberg, S. E., and Airoldi, E. M. (2010), “A Survey of Statistical Network Models,” Foundations and Trends® in Machine Learning, 2, 129–233. DOI: 10.1561/2200000005.
  • Gross, E., Petrović, S., and Stasi, D. (2016), “Goodness-of-Fit for Log-Linear Network Models: Dynamic Markov Bases Using Hypergraphs,” Annals of the Institute of Statistical Mathematics, 69, 673–704. DOI: 10.1007/s10463-016-0560-2.
  • Gross, E., Petrović, S., and Stasi, D. (2021), “Goodness of Fit for Log-Linear ERGMs,” preprint, in revision.
  • Hara, H., and Takemura, A. (2010), “Connecting Tables with Zero-One Entries by a Subset of a Markov Basis,” in Algebraic Methods in Statistics and Probability II, volume 516 of Contemporary Mathematics, eds. M. Viana and H. Wynn, 199–213, Providence, RI: American Mathematical Society.
  • Hara, H., Aoki, S., and Takemura, A. (2012), “Running Markov Chain Without Markov Basis,” in Harmony of Gröbner Bases and the Modern Industrial Society, pp. 46–62, Singapore: World Scientific.
  • Hazelton, M. L., Mcveagh, M. R., and van Brunt, B. (2020), “Geometrically Aware Dynamic Markov Bases for Statistical Linear Inverse Problems,” Biometrika, 108, 609–626. DOI: 10.1093/biomet/asaa083.
  • Hoşten, S., and Sullivant, S. (2007), “A Finiteness Theorem for Markov Bases of Hierarchical Models,” Journal of Combinatorial Theory, Series A, 114, 311–321. DOI: 10.1016/j.jcta.2006.06.001.
  • Kahle, D., Garcia-Puente, L., and Yoshida, R. (2014a), algstat: Algebraic Statistics in R, R package version 0.1.1. Available at https://github.com/dkahle/algstat.
  • Kahle, D., Yoshida, R., and Garcia-Puente, L. (2018), “Hybrid Schemes for Exact Conditional Inference in Discrete Exponential Families,” Annals of the Institute of Statistical Mathematics, 70, 983–1011. DOI: 10.1007/s10463-017-0615-z.
  • Kahle, T., Rauh, J., and Sullivant, S. (2014b), “Positive Margins and Primary Decomposition,” Journal of Commutative Algebra, 6, 173–208. DOI: 10.1216/JCA-2014-6-2-173.
  • Karwa, V., and Petrović, S. (2016), “Coauthorship and Citation Networks for Statisticians: Comment. Invited Comment on the Paper by Jin and Ji,” Annals of Applied Statistics, 10, 1827–1834.
  • Karwa, V., Pati, D., Petrović, S., Solus, L., Alexeev, N., Raič, M., Wilburne, D., Williams, R., and Yan, B. (2023), “Monte Carlo Goodness-of-Fit Tests for Degree Corrected and Related Stochastic Blockmodels,” Journal of the Royal Statistical Society, Series B, to appear.
  • Knop, D., Pilipczuk, M., and Wrochna, M. (2020), “Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints,” ACM Transactions on Computation Theory, 12, 1–19. DOI: 10.1145/3397484.
  • Kosta, D. (2020), “Markov Bases of Toric Ideals: Connecting Commutative Algebra and Statistics,” London Mathematical Society Newsletter, 486, 34–37.
  • Koutecký, M., Levin, A., and Onn, S. (2018), “A Parameterized Strongly Polynomial Algorithm for Block Structured Integer Programs,” in 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018), volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 85:1–85:14.
  • Kràl, D., Norine, S., and Pangrac̀, O. (2010), “Markov Bases of Binary Graph Models of K4 -Minor Free Graphs,” Journal of Combinatorial Theory, Series A, 117, 759–765. DOI: 10.1016/j.jcta.2009.07.007.
  • Lauritzen, S. L. (1996). Graphical Models, Oxford Statistical Science Series, Oxford: Oxford University Press.
  • Lee, S. (2018), “Markov Chain Monte Carlo and Exact Conditional Tests with Three-Way Contingency Tables,” Master’s thesis, Naval Postgraduate School.
  • Ogawa, M., Hara, H., and Takemura, A. (2013), “Graver Basis for an Undirected Graph and its Application to Testing the Beta Model of Random Graphs,” Annals of Institute of Statistical Mathematics, 65, 191–212. DOI: 10.1007/s10463-012-0367-8.
  • Onn, S., Thoma, A., and Vladoiu, M. (2022), “Asymptotic Behavior of Markov Complexity of Matrices.” https://arxiv.org/abs/2210.01686
  • Petrović, S., and Stokes, E. (2013), “Betti Numbers of Stanley-Reisner Rings Determine Hierarchical Markov Degrees,” Journal of Algebraic Combinatorics, 37, 667–682. DOI: 10.1007/s10801-012-0381-1.
  • Petrović, S., Rinaldo, A., and Fienberg, S. E. (2010), “Algebraic Statistics for a Directed Random Graph Model with Reciprocation,” in Algebraic Methods in Statistics and Probability II, volume 516 of Contemporary Mathematics, eds. M. Viana and H. Wynn, pp. 261–283, Providence RI: American Mathematical Society.
  • Rapallo, F., and Yoshida, R. (2010), “Markov Bases and Subbases for Bounded Contingency Tables,” Annals of the Institute of Statistical Mathematics, 62, 85–805. DOI: 10.1007/s10463-010-0289-2.
  • Rasch, G. (1960), Probabilistic Models for Some Intelligence and Attainment Tests, Chicago, IL: University of Chicago Press.
  • Rauh, J., and Sullivant, S. (2016), “Lifting Markov Bases and Higher Codimension Toric Fiber Products,” Journal of Symbolic Computation, 74, 276–307. DOI: 10.1016/j.jsc.2015.07.003.
  • Rinaldo, A., Petrović, S., and Fienberg, S. E. (2013), “Maximum Likelihood Estimation in the Beta Model,” Annals of Statistics, 41, 1085–1110.
  • Schrijver, A. (1999), Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete Mathematics and Optimization, Chichester: Wiley.
  • Stanley, C., and Windisch, T. (2018), “Heat-Bath Random Walks with Markov Bases,” Advances in Applied Mathematics, 92, 122–143. DOI: 10.1016/j.aam.2017.08.002.
  • Sturmfels, B. (1996), Gröbner bases and Convex Polytopes. University Lecture Series, no. 8. Providence, RI: American Mathematical Society.
  • Sullivant, S. (2021), Algebraic Statistics. Graduate Studies in Mathematics, Providence, RI: American Mathematical Society.
  • Takken, A. (2000), Monte Carlo Goodness-of-Fit Tests for Discrete Data,” PhD thesis, Dept. Statistics, Stanford University.
  • Tatakis, C., and Thoma, A. (2022), “On the Relative Size of Toric Bases,” Journal of Algebra and Its Applications, 21, 2250079. DOI: 10.1142/S0219498822500797.
  • Windisch, T. (2015), “Rapid Mixing and Markov Bases,” SIAM Journal of Discrete Mathematics, 30, 2130–2145. Available at arXiv:1505.03018. DOI: 10.1137/15M1022045.
  • Yoshida, R. (2010), “Open Problems on Connectivity of Fibers with Positive Margins in Multi-Dimensional Contingency Tables,” The Journal of Algebraic Statistics, 1, 13–26, 2010. DOI: 10.18409/jas.v1i1.5.
  • Yoshida, R., and Barnhill, D. (2023), “Connecting Tables with Allowing Negative Cell Counts,” Available at arXiv:2205.07167.
  • Zhangm J., and Chen, Y. (2013), “Sampling for Conditional Inference on Network Data,” Journal of the American Statistical Association, 108, 1295–1307. DOI: 10.1080/01621459.2012.758587.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.