262
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Convergence and Data Dependency of Normal−S Iterative Method for Discontinuous Operators on Banach Space

, , &
Pages 322-345 | Received 10 Dec 2016, Accepted 01 Aug 2017, Published online: 19 Sep 2017

References

  • M. F. Barnsley, V. Ervin, D. Hardin, and J. Lancaster (1986). Solution of an inverse problem for fractals and other sets. Proc. Natl. Acad. Sci. USA 83:1975–1977.
  • M. F. Barnsley, B. Harding, and K. B. Igudesman (2011). How to transform and filtering images using iterated function systems. SIAM J. Imaging Sci. 4:1001–1028.
  • I. Beg, A. Latif, and T. Y. Minhas (1996). Some fixed point theorems in topological vector spaces. Demonstr. Math. 29:549–555.
  • M. I. Berenguer, H. Kunze, D. La Torre, and M. R. Galán (2016). Galerkin method for constrained variational equations and a collage-based approach to related inverse problems. J. Comput. Appl. Math. 292:67–75.
  • V. Berinde (2007). Iterative Approximation of Fixed Points, 2nd ed. Springer Verlag, New York.
  • R. E. Castillo, J. C. Ramos-Fernández, and E. M. Rojas (2016). Volterra integral equations on variable exponent Lebesgue spaces. J. Integral Eqn. Appl. 28:1–29.
  • L. B. Ciric (1971). Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Beograd) (N.S.) 12:19–26.
  • C. Colapinto and D. La Torre (2008). Iterated function systems, iterated multifunction systems, and applications. In Mathematical and Statistical Methods in Insurance and Finance, 1st ed. (C. Perna and M. Sibillo, eds.), Springer-Verlag Mailand, Milan.
  • W. R. Derrick and L. Nova (1989). Fixed point theorems for discontinuous operators. Glasnik Mat. 24:339–348.
  • Y. Fisher (ed.) (1998). Fractal Image Coding and Analysis, 1st ed. Springer-Verlag, Proc. NATO ASI, Berlin.
  • F. Gürsoy, V. Karakaya, and B. E. Rhoades (2013). Data dependence results of new multi-step and S-iterative schemes for contractive-like operators. Fixed Point Theory Appl. 2013:1–12.
  • N. Hussain and A. R. Khan (2003). Applications of the best approximation operator to ∗-nonexpansive maps in Hilbert spaces. Numer. Funct. Anal. Optim. 24(3–4):327–338.
  • S. Ishikawa (1974). Fixed points by a new iteration method. Proc. Amer. Math. Soc. 44:147–150.
  • G. Jungck (1976). Commuting mappings and fixed points. Amer. Math. Mon. 83:261–263.
  • A. R. Khan, A. A. Domlo, and N. Hussain (2017). Coincidences of Lipschitz-type hybrid maps and invariant approximation. Numer. Funct. Anal. Optim. 28(9–10):1165–1177.
  • A. R. Khan, V. Kumar, and N. Hussain (2014). Analytical and numerical treatment of Jungck-type iterative schemes. Appl. Math. Comput. 231:521–535.
  • A. R. Khan, F. Gürsoy, and V. Karakaya (2016). Jungck-Khan iterative scheme and higher convergence rate. Int. J. Comput. Math. 93:2092–2105.
  • A. R. Khan, F. Gürsoy, and V. Kumar (2016). Stability and data dependence results for Jungck-Khan iterative scheme. Turk J. Math. 40:631–640.
  • H. Kunze and D. La Torre (2013). Fractals, with applications to signal and image modeling. In Mathematical Modeling with Multidisciplinary Applications, 1st ed. (X.-S. Yang, ed.), John Wiley & Sons, Inc., Hoboken, NJ, USA.
  • H. E. Kunze and D. La Torre (2015). Collage-type approach to inverse problems for elliptic PDEs on perforated domains. Electron. J. Differ. Eqn. 2015:1–11.
  • H. Kunze, J. Hicken, and E. R. Vrscay (2004). Inverse problems for ODEs using contraction maps: Suboptimality of the collage method. Inverse Problems 20:977–991.
  • H. E. Kunze, D. La Torre, and E. R. Vrscay (2007). Contractive multifunctions, fixed point inclusions and iterated multifunction systems. J. Math. Anal. Appl. 330:159–173.
  • H. E. Kunze, D. La Torre, and E. R. Vrscay (2009). Inverse problems for random differential equations using the collage method for random contraction mappings. J. Comput. Appl. Math. 223:853–861.
  • H. Kunze, D. La Torre, F. Mendivil, and E. R. Vrscay (2011). Fractal-Based Methods in Analysis, 1st ed. Springer Science and Business Media.
  • K. Levere, H. Kunze, and D. La Torre (2013). A collage-based approach to solving inverse problems for second-order nonlinear parabolic PDEs. J. Math. Anal. Appl. 406:120–133.
  • J. Lopez-Gomez (1988). A fixed point theorems for discontinuous operators Glasnik Matematicki 23:15–118.
  • B. B. Mandelbort (1977). Fractals: Form, Chance, and Dimension. W.H. Freeman & Company, San Francisco.
  • W. R. Mann (1953). Mean value methods in iterations. Proc. Amer. Math. Soc. 4:506–510.
  • J. R. Morales and E. M. Rojas (2015). On the sum of contractive type of mappings I: Maps on the same class. In Current Trends in Analysis and Its Applications. Springer International Publishing, Birkhäuser, Basel, Switzerland, pp. 831–842.
  • L. Nova (1986). Fixed point theorems for some discontinuous operators. Pacific J. Math. 123:189–196.
  • W. Phuengrattana and S. Suantai (2013). Comparison of the rate of convergence of various iterative methods for the class of weak contractions in Banach spaces. Thai J. Math. 11:217–226.
  • S. Reich (1971). Kannan’s fixed point theorem. Boll. Un. Mat. Ital. 4:1–11.
  • M. Ruhl and H. Hartenstein (1997). Optimal fractal coding is NP-hard, In Proc. IEEE Data Compression Conf., 1st ed. (J. Storer and M. Cohn, eds.), IEEE, Snowbird, UT.
  • I. A. Rus (1972). Some fixed point theorems in metric spaces. Rend. Ist. Mat. Univ. Trieste 3:169–172.
  • D. R. Sahu (2011). Applications of S iteration process to constrained minimization problems and split feasibility problems. Fixed Point Theory 12:187–204.
  • S. M. Şoltuz and T. Grosan (2008). Data dependence for Ishikawa iteration when dealing with contractive like operators. Fixed Point Theory Appl. 2008:1–7.
  • X. Weng (1991). Fixed point iteration for local strictly pseudocontractive mapping. Proc. Amer. Math. Soc. 113:727–731.
  • K. Włlodarczyk (1988). New extension of the Banach contraction principle to locally convex spaces and applications. Indag. Math. (Proc.) 91:211–221.
  • B. Xu and M. A. Noor (2002). Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 267:444–453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.