73
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Simultaneous Approximations in Banach Space-Valued Bochner–Lebesgue Spaces with Variable Exponent

&
Pages 19-33 | Received 19 Sep 2016, Accepted 01 Jun 2018, Published online: 04 Dec 2018

References

  • Almeida, A., Hästö, P. (2010). Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258(5):1628–1655.
  • Almeida, A., Caetano, A. (2016). Atomic and molecular decompositions in variable exponent 2-microlocal spaces and applications. J. Funct. Anal. 270(5):1888–1921.
  • Almeida, A., Caetano, A. (2016). On 2-microlocal spaces with all exponents variable. Nonlinear Anal. 135:97–119.
  • Almeida, A., Hasanov, J., Samko, S. (2008). Maximal and potential operators in variable exponent morrey spaces. Georgian Math. J. 15:198–208.
  • Cruz-Uribe, D., Fiorenza, A. (2015). Variable Lebesgue Spaces. Basel, Switzerland: Birkhäuser.
  • Diening, L., Hästö, P., Roudenko, S. (2009). Function spaces of variable smoothness and integrablity. J. Funct. Anal. 256(6):1731–1768.
  • Diening, L., Harjulehto, P., Hästö, P., Růžička, M. (2011). Lebesgue and Sobolev Spaces with Variable Exponents. Berlin, Germany: Springer.
  • Hästö, P. (2009). Local-to-global results in variable exponent spaces. Math. Res. Lett. 16(2):263–278.
  • Harjulehto, P., Hästö, P., Le, U. V., Nuortio, M. (2010). Overview of differential equations with non-standard growth. Nonlinear Anal. 72(12):4551–4574.
  • Izuki, M. (2010). Boundedness of sublinear operators on Herz spaces with variable exponent and application to wavelet characterization. Anal. Math. 36(1):33–50.
  • Izuki, M., Noi, T. (2016). Hardy spaces associated to critical Herz spaces with variable exponent. Mediterr. J. Math. 13(5):2981–3013.
  • Kempka, H. (2009). 2-Microlocal Besov and Triebel-Lizorkin spaces of variable integrability. Rev. Mat. Complut. 22(1):227–251.
  • Kempka, H. (2010). Atomic, molecular and wavelet decomposition of generalized 2-microlocal Besov spaces. J. Funct. Spaces Appl. 8(2):129–165.
  • Kováčik, O., Rákosník, J. (1991). On spaces Lp(x) and Wk,p(x). Czech. Math. J. 41:592–618.
  • Nakai, E., Sadasue, G. (2012). Martingale Morrey-Campanato spaces and fractional integrals. J. Funct. Spaces Appl. 2012: 673929.
  • Nakai, E., Sawano, Y. (2012). Hardy spaces with variable exponents and generalized campanato spaces. J. Funct. Anal. 262(9):3665.
  • Samko, S. (2013). Variable exponent Herz spaces. Mediterr. J. Math. 10(4):2007–2025.
  • Xu, J.-S. (2008). Variable Besov and Triebel-Lizorkin spaces. Anna. Acad. Sci. Fenn. Math 33:511–522.
  • Xu, J.-S. (2014). Proximinality in Banach space valued Musielak-Orlicz spaces. J. Inequal. Appl. 2014(1):146.
  • Yan, X.-J., Yang, D.-C., Yuan, W., Zhuo, C.-Q. (2016). Variable weak Hardy spaces and their applications. J. Funct. Anal. 271(10):2822.
  • Yang, D.-C., Yuan, W., Zhuo, C. (2015). Triebel-Lizorkin type spaces with variable exponents. Banach J. Math. Anal. 9(4):146–202.
  • Yang, D.-C., Zhuo, C.-Q., Nakai, E. (2016). Characterizations of variable exponent Hardy spaces via Riesz transforms. Rev. Mat. Complut. 29(2):245–270.
  • Yang, D.-C., Zhuo, C.-Q., Yuan, W. (2015). Besov-type spaces with variable smoothness and integrability. J. Funct. Anal. 269(6):1840–1898.
  • Chen, Y., Levine, S., Rao, R. (2006). Variable exponent, linear growth functionals in image restoration. Siam J. Appl. Math. 66(4):1383–1406.
  • Harjulehto, P., Hästö, P., Latvala, V., Toivanen, O. (2013). Critical variable exponent functionals in image restoration. Appl. Math. Comp. 26(1):56–60.
  • Levine, S. E. (2005). An adaptive variational model for image decomposition. In: Rangarajan, A., Figueiredo, M., Zerubia, J., eds. Energy Minimization Methods in Computer Vision and Pattern Recognition. New York, NY: Springer, pp. 382–397.
  • Li, F., Li, Z., Pi, L. (2010). Variable exponent functionals in image restoration. Appl. Math. Comp. 216(3):870–882.
  • Rǎdulescu, V. D., Repovš, D. (2015). Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. New York, NY: CRC Press.
  • Růžička, M. (2000). Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, Vol. 1748. Berlin, Germany: Springer.
  • Tiirola, J. (2014). Image decompositions using spaces of variable smoothness and integrability. SIAM J. Imaging Sci. 7(3):1558–1587.
  • Cheng, C., Xu, J.-S. (2013). Geometric properties of Banach space valued Bochner-Lebesgue spaces with variable exponent. J. Math. Inequal 7(3):461–475.
  • Khalil, R. (1983). Best approximation in Lp(I,X). Math. Proc. Camb. Phil. Soc. 94(02):277–279.
  • Khalil, R., Deeb, W. (1989). Best approximation in Lp(I,X) II. J. Approx. Theory 59:296–299.
  • Khalil, R., Saidi, F. (1995). Best approximation in L1(I,X). Proc. Amer. Math. Soc. 123(1):183–190.
  • Light, W. A. (1989). Proximinality in Lp(S,Y). Rocky Mountain J. Math. 19(1):251–259.
  • Mendoza, J. (1998). Proximinality in Lp(μ,X). J. Approx. Theory 93(2):331–343.
  • Micherda, B. (2013). On proximinal subspaces of vector-valued Orlicz-Musielak spaces. J. Approx. Theory 174:182–191.
  • Mendoza, J., Pakhrou, T. (2007). Best simultaneous approximation in L1(μ,X). J. Approx. Theory 145:212–220.
  • Saidi, F., Hussein, D., Khalil, R. (2002). Best simultaneous approximation in Lp(I,E). J. Approx. Theory 116(2):369–379.
  • Luo, X., Li, C., Xu, H., Yao, J. (2011). Existence of best simultaneous approximations in Lp(S,Σ,X).. J. Approx. Theory 163:1300–1316.
  • Luo, X., Li, C. (2015). Existence of best simultaneous approximations in Lp(S,Σ,X) without the RNP assumption. Sci. China Math. 58(4):813–820.
  • Diestel, J. (1972). Geometry of Banach Spaces-Selected Topics. New York, NY: Springer.
  • Megginson, R. E. (1998). An Introduction to Banach Space Theory. Graduate Texts in Mathematics, Vol. 183. Berlin: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.