220
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Crank–Nicolson Finite Element Scheme and Modified Reduced-Order Scheme for Fractional Sobolev Equation

, &
Pages 1635-1655 | Received 06 Jun 2018, Accepted 09 Jun 2018, Published online: 26 Oct 2018

References

  • Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K. (2007). Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191(1):12–20.
  • Zhuang, P., Liu, F., Anh, V., Turner, I. (2009). Numerical methods for the variable-order fractional advection diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. Anal. 47(3):1760–1781. doi:10.1137/080730597
  • Meerschaert, M. M., Tadjeran, C. (2006). Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1):80–90. doi:10.1016/j.apnum.2005.02.008
  • Shen, S., Liu, F., Anh, V. (2011). Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algor. 56(3):383–404. doi:10.1007/s11075-010-9393-x
  • Atangana, A., Baleanu, D. (2013). Numerical solution of a kind of fractional parabolic equations via two difference schemes. Abstr. Appl. Anal. 2013:828764.
  • Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J. J. (2012). Fractional Calculus Models and Numerical Methods Series on Complexity, Nonlinearity and Chaos. Singapore: World Scientific Publishing.
  • Shen, S., Liu, F., Anh, V., Turner, I., Chen, J. (2013). A characteristic difference method for the variable-order fractional advection-diffusion equation. J. Appl. Math. Comput. 42(1–2):371–386. doi:10.1007/s12190-012-0642-0
  • Wang, K. X., Wang, H. (2011). A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 34(7):810–816. doi:10.1016/j.advwatres.2010.11.003
  • Lin, R., Liu, F., Anh, V., Turner, I. (2009). Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212(2):435–445.
  • Yuste, S. B. (2006). Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216(1):264–274. doi:10.1016/j.jcp.2005.12.006
  • Quintana-Murillo, J., Yuste, S. B. (2013). A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations. Eur. Phys. J. Spec. Top. 222(8):1987–1998. doi:10.1140/epjst/e2013-01979-7
  • Yuste, S. B., Quintana-Murillo, J. (2012). A finite difference method with non-uniform time steps for fractional diffusion equations. Comput. Phys. Commun. 183(12):2594–2600. doi:10.1016/j.cpc.2012.07.011
  • Sousa, E. (2012). A second order explicit finite difference method for the fractional advection diffusion equation. Comput. Math. Appl. 64(10):3141–3152. doi:10.1016/j.camwa.2012.03.002
  • Li, C. P., Zhao, Z. G., Chen, Y. Q. (2011). Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62(3):855–875. doi:10.1016/j.camwa.2011.02.045
  • Jiang, Y. J., Ma, J. T. (2011). High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11):3285–3290. doi:10.1016/j.cam.2011.01.011
  • Zhang, H., Liu, F., Anh, V. (2010). Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl. Math. Comput. 217(6):2534–2545.
  • Zheng, Y. Y., Li, C. P., Zhao, Z. G. (2010). A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59(5):1718–1726. doi:10.1016/j.camwa.2009.08.071
  • Zhao, Z. G., Li, C. P. (2012). Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl. Math. Comput. 219(6):2975–2988.
  • Jiang, Y. J., Ma, J. T. (2013). Moving finite element methods for time fractional partial differential equations. Sci. China Math. 56(6):1287–1300. doi:10.1007/s11425-013-4584-2
  • Ford, N. J., Xiao, J. Y., Yan, Y. B. (2011). A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 14(3):454–474.
  • Deng, W. H. (2009). Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1):204–226. doi:10.1137/080714130
  • Zhang, N., Deng, W. H., Wu, Y. J. (2012). Finite difference/element method for a two-dimensional modified fractional diffusion equations. Adv. Appl. Math. Mech. 4(04):496–518. doi:10.4208/aamm.10-m1210
  • Liu, Y., Li, H., Gao, W., He, S., Fang, Z. C. (2014). A new mixed element method for a class of time-fractional partial differential equations. Sci. World J. 2014:141467.
  • Liu, Y., Fang, Z. C., Li, H., He, S. (2014) A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243:703–717.
  • Liu, Y., Du, Y. W., Li, H., Wang, J. F. (2014). An H1-Galerkin mixed finite element method for time fractional reaction-diffusion equation. J. Appl. Math. Comput. 47:103–117.doi:10.1007/s12190-014-0764-7
  • Lin, Y. M., Xu, C. J. (2007). Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2):1533–1552. doi:10.1016/j.jcp.2007.02.001
  • Zhang, X. D., Liu, J., Wei, L. L., Ma, C. X. (2013). Finite element method for Grwünwald-Letnikov time-fractional partial differential equation. Appl. Anal. 92(10):2103–2114. doi:10.1080/00036811.2012.718332
  • Liu, Y., Li, H., He, S., Fang, Z. C., Wang, J. F. (2014). A new characteristic expanded mixed method for Sobolev equation with convection-term. Int. J. Model. Simul. Sci. Comput. 05(01):1350015. doi:10.1142/S1793962313500153
  • Ewing, R. E. (1978). Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations. SIAM J. Numer. Anal. 15(6):1125–1150. doi:10.1137/0715075
  • Lin, Y. P., Zhang, T. (1992). Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions. J. Math. Anal. Appl. 165(1):180–191. doi:10.1016/0022-247X(92)90074-N
  • Shi, D. Y., Zhang, Y. D. (2011). High accuracy analysis of a new nonconforming mixed finite element scheme for Sobolev equations. Appl. Math. Comput. 218(7):3176–3186.
  • Guo, L., Chen, H. Z. (2006). H1-Galerkin mixed finite element method for Sobolev equations. J. Sys. Sci. Math. Sci. 26(3):301–314.
  • Guo, H., Rui, H. X. (2006). Least-squares Galerkin procedures for Sobolev equations. Acta Math. Appl. Sinica 29(4):609–618.
  • Zhang, J. S., Yang, D. P., Zhu, J. (2011). Two new least-squares mixed finite element procedures for convection-dominated Sobolev equations. Appl. Math. J. Chin. Univ. 26(4):401–411. doi:10.1007/s11766-011-2851-y
  • Gu, H. M., Yang, D. P. (2000). Least-squares finite element methods for Sobolev equations. Indian J. Pure Appl. Math. 31(5):505–517.
  • Sun, T. J., Yang, D. P. (2008). Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations. Numer. Methods Partial Differ. Equ. 200(1):879–896.
  • Gao, F. Z., Qiu, J. X., Zhang, Q. (2009). Local discontinuous Galerkin finite element method and error estimates for one class of Sobolev equation. J. Sci. Comput. 41(3):436–460. doi:10.1007/s10915-009-9308-y
  • Berkooz, G., Holmes, P., Lumley, J. L. (1993). The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25(1):539–575. doi:10.1146/annurev.fl.25.010193.002543
  • Sirovich, L. (1987). Turbulence and the dynamics of coherent structures: Part I-III. Quart. Appl. Math. 45(3):561–590. doi:10.1090/qam/910462
  • Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition. New York, NY: Academic Press.
  • Jolliffe, I. T. (2002). Principal Component Analysis. Berlin: Springer.
  • Kunisch, K., Volkwein, S. (2001). Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90(1):117–148. doi:10.1007/s002110100282
  • Kunisch, K., Volkwein, S. (2002). Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40(2):492–515. doi:10.1137/S0036142900382612
  • Luo, Z. D., Chen, J., Navon, I. M., Yang, X. Z. (2009). Mixed finite element formulation and error estimates based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations. SIAM J. Numer. Anal. 47(1):1–19. doi:10.1137/070689498
  • Luo, Z. D., Chen, J., Sun, P., Yang, X. Z. (2009). Finite element formulation based on proper orthogonal decomposition for parabolic equations. Sci. China Ser. A-Math. 52(3):585–596. doi:10.1007/s11425-008-0125-9
  • Luo, Z. D., Li, H., Sun, P. (2013). A reduced-order Crank-Nicolson finite volume element formulation based on POD method for parabolic equations. Appl. Math. Comput. 219(11):5887–5900.
  • Luo, Z. D., Xie, Z. H., Shang, Y. Q., Chen, J. (2011). A reduced finite volume element formulation based on POD for parabolic equations. J. Comput. Appl. Math. 235(8):2098–2111. doi:10.1016/j.cam.2010.10.008
  • Adams, R. A. (1975). Sobolev Spaces. New York, NY: Academic Press.
  • Sun, Z. Z., Wu, X. N. (2006). A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2):193–209. doi:10.1016/j.apnum.2005.03.003
  • Thomée, V. (1997). Galerkin Finite Element Methods for Parabolic Problems. Berlin: Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.