1,487
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Frames for the Solution of Operator Equations in Hilbert Spaces with Fixed Dual Pairing

&
Pages 65-84 | Received 20 Apr 2018, Accepted 27 Jun 2018, Published online: 01 Dec 2018

References

  • Duffin, R. J., Schaeffer, A. C. (1952). A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72(2):341–366.
  • Aldroubi, A. (1995). Portraits of frames. Proc. Amer. Math. Soc. 123(6):1661–1668.
  • Benedetto, J. J., Heller, W. (1990). Irregular sampling and the theory of frames, I. Note Di Matematica. 10(1):103–125.
  • Christensen, O. (2016). An Introduction to Frames and Riesz Bases, 2nd ed. Cham: Birkhäuser/Springer.
  • Pesenson, I., Mhaskar, H., Mayeli, A., Le Gia, Q. T., Zhou, D.-X. (2017). Frames and Other Bases in Abstract and Function Spaces, Applied and Numerical Harmonic Analysis. Basel: Birkhäuser.
  • Pilipović, S., Stoeva, D. T. (2014). Fréchet frames, general definition and expansion. Anal. Appl. 12(02):195–208.
  • Bölcskei, H., Hlawatsch, F., Feichtinger, H. G. (1998). Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 46(12):3256–3268.
  • Gazeau, J.-P. (2009). Coherent States in Quantum Physics. Weinheim: Wiley.
  • Balazs, P., Holighaus, N., Necciari, T., Stoeva, D. T. Frame theory for signal processing in psychoacoustics, excursions in harmonic analysis. In: Radu Balan, John J. Benedetto, Wojciech Czaja, and Kasso Okoudjou, eds. Applied and Numerical Harmonic Analysis, Vol. 5, Basel: Birkhäuser, pp. 225–268.
  • Sauter, S., Schwab, C. (2011). Boundary Element Methods, Springer Series in Computational Mathematics. Berlin–Heidelberg: Springer.
  • Dahmen, W., Schneider, R. (1999). Composite wavelet basis for operator equations. Math. Comp. 68(228):1533–1567.
  • Gaul, L., Kögler, M., Wagner, M. (2003). Boundary Element Methods for Engineers and Scientists. Berlin: Springer.
  • Griebel, M. (1994). Multilevelmethoden als Interrelationship über Erzeugendensystemen. Stuttgart: B.G. Teubner.
  • Grohs, P., Obermeier, A. (2016). Optimal adaptive ridgelet schemes for linear transport equations. Appl. Comput. Harmon. Anal. 41(3):768–814.
  • Harbrecht, H., Schneider, R., Schwab, C. (2008). Multilevel frames for sparse tensor product spaces. Numer. Math. Math. 110(2):199–220.
  • Oswald, P. (1994). Multilevel Finite Element Approximation. Stuttgart: B.G. Teubner.
  • Stevenson, R. (2003). Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41(3):1074–1100.
  • Balazs, P. (2008). Matrix-representation of operators using frames. Sampl. Theory Signal Image Process. 7(1):39–54.
  • Balazs, P., Gröchenig, K., (2017). A guide to localized frames and applications to Galerkin-like representations of operators, frames and other bases in abstract and function spaces, In: Pesenson, I., Mhaskar, H., Mayeli, A., Le Gia, Q. T., Zhou, D.-X., eds. Applied and Numerical Harmonic Analysis, Vol. 1, Basel: Birkhäuser, pp. 47–79.
  • P., Balazs, G., Rieckh, (2011). Oversampling operators: Frame representation of operators. Analele Universitatii “Eftimie Murgu” 2:107–114.
  • Dahlke, S., Fornasier, M., Raasch, T. (2007). Adaptive frame methods for elliptic operator equations. Adv. Comput. Math. 27(1):27–63.
  • Casazza, P., Christensen, O., Stoeva, D. T. (2005). Frame expansions in separable Banach spaces. J. Math. Anal. Appl. 307(2):710–723.
  • Christensen, O., Stoeva, D. T. (2003). p-frames in separable Banach spaces. Adv. Comput. Math. 18(2/4):117–126.
  • Gröchenig, K. (1991). Describing functions: Atomic decompositions versus frames. Monatsh. Math. 112(1):1–41.
  • Stoeva, D. T. (2009). Xd-frames in Banach spaces and their duals. Int. J. Pure Appl. Math. 52(1):1–14.
  • Braess, D. (2001). Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd ed. Cambridge: Cambridge University Press.
  • Brenner, S. C., Scott, L. R. (1994). The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. New York, NY: Springer.
  • Werner, D. (1995). Funktionalanalysis. Berlin: Springer.
  • Heuser, H. (2006). Funktionalanalysis – Theorie und Anwendungen, 4th ed. Stuttgart: Teubner.
  • Cordero, E., Feichtinger, H. G., Luef, F. (2008). Banach Gelfand Triples for Gabor Analysis, Pseudo-Differential Operators. Lecture Notes in Mathematics, Vol. 1949. Berlin: Springer, pp. 1–33.
  • Antoine, J.-P. (1998). Quantum Mechanics beyond Hilbert Space. In: Irreversibility and Causality Semigroups and Rigged Hilbert Spaces. Berlin–Heidelberg: Springer, pp. 1–33.
  • Antoine, J.-P., Balazs, P. (2011). Frames and semi-frames. J. Phys. A: Math. Theor. 44(20):205201.
  • Antoine, J.-P., Balazs, P. (2012). Frames, semi-frames, and Hilbert scales. Numer. Funct. Anal. Optim. 33(7199):736–769.
  • Balazs, P., Stoeva, D. T., Antoine, J.-P. (2011). Classification of general sequences by frame-related operators. Sampl. Theory Signal Image Process. 10(2):151–170.
  • Kappei, J. (2012). Adaptive Wavelet Frame Methods for Nonlinear Elliptic Problems. Berlin: Logos-Verlag.
  • Werner, M. (2009). Adaptive wavelet frame domain decomposition methods for elliptic operator equations. Ph.D. dissertation. Philipps-Universität Marburg, Germany.
  • Balazs, P, Antoine, J.-P., Gryboś, A.. (2010). Weighted and controlled frames: Mutual relationship and first numerical properties. Int. J. Wavelets. Multiresolut. Inf. Process. 8(1):109–132.
  • Stoeva, D. T., Balazs, P. (2012). Weighted frames and frame multipliers, Annual of the University of Architecture, Civil Engineering and Geodesy XLIII–LIV 2004–2009 (Fasc. II Mathematics Mechanics), pp. 33–42.
  • Daubechies, I. (1992). Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, PA: SIAM.
  • Dahmen, W. (1997). Wavelet and multiscale methods for operator equations. Anu. Numerica. 6:55–228.
  • Bramble, J., Pasciak, J., Xu, J. (1990). Parallel multilevel preconditioners. Math. Comp. Comput. 55(191):1–22.
  • Oswald, P. (1990). On function spaces related to finite element approximation theory. Z Anal. Anwend. 9(1):43–66.
  • Gohberg, I., Goldberg, S., Kaashoek, M. A. (2003). Basic Classes of Linear Operators. Basel: Birkhäuser.
  • Crone, L. (1971). A characterization of matrix operator on ℓ2. Math. Z Z. 123(4):315–317.
  • Balazs, P. (2008). Hilbert-Schmidt operators and frames – Classification, best approximation by multipliers and algorithms. Int. J. Wavelets. Multiresolut. Inf. Process. 06(02):315–330.
  • Bourouihiya, A. (2008). The tensor product of frames. Sampl. Theory Signal Image Process. 7(1):427–438.
  • Balazs, P., Rieckh, G. (2016). Redundant Representation of Operators arXiv:1612.06130,
  • Balazs, P., Feichtinger, H. G., Hampejs, M., Kracher, G. (2006). Double preconditioning for Gabor frames. IEEE Trans. Signal Process. 54(12):4597–4610.
  • Janssen, A. J. E. M., Søndergaard, P. (2007). Iterative algorithms to approximate canonical gabor windows: Computational aspects. J. Fourier Anal. Appl. 13(2):211–241.
  • Perraudin, N., Holighaus, N., Søndergaard, P., Balazs, P. (2018). Designing Gabor windows using convex optimization. Appl. Math. Comput. 330:266–287.
  • Gröchenig, K. (2001). Foundations of Time-Frequency Analysis. Boston, MA: Birkhäuser.
  • Gohberg, I., Goldberg, S., Kaashoek, M. A. (1990). Classes of Linear Operators. Operator Theory: Advances and Applications, Vol. I, Basel: Birkhäuser.
  • Bogdanova, I., Vandergheynst, P., Antoine, J.-P., Jacques, L., Morvidone, M. (2005). Stereographic wavelet frames on the sphere. Appl. Comput. Harmon. Anal. 19(2):223–252.
  • Jacques, L. (2004), Ondelettes, Repères et Couronne Solaire, Ph.D. thesis, Univ. Cath. Louvain, Louvain-la-Neuve.
  • Casazza, P. G., Chen, X. (2017). Frame scalings: A condition number approach. Linear Algebra Appl. 523:152–168.
  • Kutyniok, G., Okoudjou, K. A., Philipp, F., Tuley, E. K. (2013). Scalable frames. Linear Algebra Appl. 438(5):2225–2238.
  • Casazza, P. (2000). The art of frame theory. Taiwanese J. Math. Math. 4(2):129–202.