109
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Analysis of Stabilized Crank-Nicolson Time-Stepping Scheme for the Evolutionary Peterlin Viscoelastic Model

Pages 1611-1641 | Received 24 Jun 2020, Accepted 24 Jun 2020, Published online: 08 Jul 2020

References

  • Meyers, M. A., Chawla, K. K. (2009). Mechanical Behavior of Materials, Vol. 2, Cambridge: Cambridge University Press.
  • Lukáčová–Medvid’ová, M., Mizerová, H., Notsu, H., Tabata, M. (2017). Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange Galerkin method, Part I: A nonlinear scheme. Esaim: M2an. 51(5):1637–1661. DOI: 10.1051/m2an/2016078.
  • Renardy, M. (2000). Mathematical analysis of viscoelastic flows. In: CBMS-NSF Conference Series in Applied Mathematics, Vol. 73. Philadelphia, USA: Society for Industrial and Applied Mathematics.
  • Lukacova-Medvidova, M., Mizerova, H., Necasova, S. (2015). Global existence and uniqueness result for the diffusive Peterlin viscoelastic model. Nonlinear Anal. Theor. 120:154–170.
  • Lukáčová-Medviďová, M., Mizerová, H., Nečasová, Š., Renardy, M. (2017). Global existence result for the generalized Peterlin viscoelastic model. SIAM J. Math. Anal. 49(4):2950–2964. DOI: 10.1137/16M1068505.
  • Baranger, J., Sandri, D. (1992). Finite element approximation of viscoelastic fluid flow: existence of approximate solutions and error bounds. I. Discontinuous constraints. Numer. Math. 63(1):13–27. DOI: 10.1007/BF01385845.
  • Ervin, V. J., Heuer, N. (2004). Approximation of time-dependent, viscoelastic fluid flow: Crank-Nicolson, finite element approximation. Numer. Methods Partial Differential Eq. 20(2):248–283. DOI: 10.1002/num.10086.
  • Ervin, V. J., Miles, W. W. (2003). Approximation of time-dependent viscoelastic fluid flow: SUPG approximation. SIAM J. Numer. Anal. 41(2):457–486. DOI: 10.1137/S003614290241177X.
  • Ravindran, S. S. (2020). Analysis of a second-order decoupled time-stepping scheme for transient viscoelastic flow. Int. J. Numer. Anal. Model. . 17(1):87–109. Volume
  • Najib, K., Sandri, D. (1995). On a decoupled algorithm for solving a finite element problem for the approximation of viscoelastic fluid flow. Numer. Math. 72(2):223–238. DOI: 10.1007/s002110050167.
  • Zheng, H., Yu, J., Shan, L. (2017). Unconditional error estimates for time dependent viscoelastic fluid flow. Appl. Numer. Math. 119:1–17. DOI: 10.1016/j.apnum.2017.03.010.
  • Lukáčová–Medvid’ová, M., Mizerová, H., Notsu, H., Tabata, M. (2017). Numerical analysis of the Oseen-type Peterlin viscoelastic model by the stabilized Lagrange Galerkin method, Part II: A linear scheme. Esaim: M2an. 51(5):1663–1689. DOI: 10.1051/m2an/2017032.
  • Jiang, Y.-L., Yang, Y.-B. (2018). Semi-discrete Galerkin finite element method for the diusive Peterlin viscoelastic model. Comput. Methods Appl. Math. 18(2):275–296. DOI: 10.1515/cmam-2017-0021.
  • Baltussen, M. G. H. M., Choi, Y. J., Hulsen, M. A., Anderson, P. D. (2011). Weakly-imposed Dirichlet boundary conditions for non-Newtonian fluid flow. J. Non-Newtonian Fluid Mech. 166(17–18):993–1003. DOI: 10.1016/j.jnnfm.2011.05.008.
  • Guenette, R., Fortin, M. (1995). A new mixed finite element method for computing viscoelastic flows. J. Non-Newtonian Fluid Mech. 60(1):27–52. DOI: 10.1016/0377-0257(95)01372-3.
  • Barrett, J. W., Süli, E. (2011). Existence and equilibration of global weak solutions to kinetic models for dilute polymers I: Finitely extensible nonlinear bead-spring chains. Math. Models Methods Appl. Sci. 21(6):1211–1289. DOI: 10.1142/S0218202511005313.
  • Girault, V., Raviart, P. A. (1986). Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Berlin: Springer-Verlag.
  • Gunzburger, M. D., Peterson, J. S. (1983). On conforming finite element methods for the inhomogeneous stationary Navier-Stokes equations. Numer. Math. 42(2):173–194. DOI: 10.1007/BF01395310.
  • Scott, L. R., Zhang, S. (1990). Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190):483–493. DOI: 10.1090/S0025-5718-1990-1011446-7.
  • Korn, A. (1906). Die Eigenschwingungen eines elastischen Korpers mit ruhender Oberflache. Akad. Wiss., Munchen, Math. Phys. Kl. Sitz. 36:351–402.
  • Ravindran, S. S. (2016). An extrapolated second order backward difference time-stepping scheme for the magnetohydrodynamics system. Numer. Funct. Anal. Optim. 37(8):990–1020. DOI: 10.1080/01630563.2016.1181651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.