41
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Analysis and Numerical Approach of a Coupled Thermo-Electro-Mechanical System for Nonlinear Hencky-Type Materials with Nonlocal Coulomb’s Friction

, & ORCID Icon
Pages 841-866 | Received 25 Nov 2022, Accepted 17 Apr 2023, Published online: 19 May 2023

References

  • Essoufi, E. L.-H., Fakhar, R., Koko, J. (2015). A decomposition method for a unilateral contact problem with Tresca friction arising in electro-elastostatics. Numer. Funct. Anal. Optim. 36(12):1533–1558. DOI: 10.1080/01630563.2015.1078812.
  • Benkhira, E. L.-H., Fakhar, R., Mandyly, Y. (2021). Analysis and numerical approach for a nonlinear contact problem with non-local friction in piezoelectricity. Acta Mech. 232(11):4273–4288. DOI: 10.1007/s00707-021-03057-7.
  • Benkhira, E.-H., Essoufi, E.-H., Fakhar, R. (2010). Analysis and numerical approximation of an electro-elastic frictional contact problem. Math. Model. Nat. Phenom. 5(7):84–90. DOI: 10.1051/mmnp/20105714.
  • Chandrasekharaiah, D. S. (1988). A generalized linear thermoelasticity theory for piezoelectric media. Acta Mech. 71(1–4):39–49. DOI: 10.1007/BF01173936.
  • Ezzat, M. A., El-Karamany, A. S., Samaan, A. A. (2004). The dependence of the modulus of elasticity on reference temperature in generalized thermoelasticity with thermal relaxation. Appl. Math. Comput. 147(1):169–189. DOI: 10.1016/S0096-3003(02)00660-4.
  • Aouadi, M. (2006). Generalized thermo-piezoelectric problems with temperature-dependent properties. Int. J. Solids Struct. 43(21):6347–6358. DOI: 10.1016/j.ijsolstr.2005.09.003.
  • Sldek, J., Sldek, V., Stak, P. (2010). Analysis of thermo-piezoelectricity problems by meshless method. Acta Mech. Slovaca. 14(4):16–27. DOI: 10.2478/v10147-011-0030-z.
  • Benaissa, H., Essoufi, E. L.-H., Fakhar, R. (2016). Analysis of a Signorini problem with nonlocal friction in thermo-piezoelectricity. Glasnik Mat. Ser. III. 51(2):391–411. DOI: 10.3336/gm.51.2.08.
  • Benaissa, H., Essoufi, E. L.-H., Fakhar, R. (2015). Existence results for unilateral contact problem with friction of thermo-electro-elasticity. Appl. Math. Mech.-Engl. Ed. 36(7):911–926. DOI: 10.1007/s10483-015-1957-9.
  • Baiz, O., Benaissa, H., El Moutawakil, D., Fakhar, R. (2019). Variational and numerical analysis of a quasistatic thermo-electro-visco-elastic frictional contact problem. J. Appl. Math. Mech./Z. Angew. Mat. Mech. (ZAMM). 99(3):e201800138.
  • Baiz, O., Benaissa, H., El Moutawakil, D., Fakhar, R. (2018). Variational and numerical analysis of a static thermo-electro-elastic problem with friction. Math. Prob. Eng. 2018:1–16. DOI: 10.1155/2018/8346891.
  • Benkhira, E. L.-H., Fakhar, R., Mandyly, Y. (2021). A convergence result and numerical study for a nonlinear piezoelectric material in a frictional contact process with a conductive foundation. Appl. Math. 66(1):87–113. DOI: 10.21136/AM.2020.0195-19.
  • Haslinger, J., Makinen, R. (1992). Shape optimization of elasto-plastic bodies under plane strains: Sensitivity analysis and numerical implementation. Struct. Optim. 4(3–4):133–141. DOI: 10.1007/BF01742734.
  • Hlavaček, I., Nečas, J. (1981). Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction, Vol. 3. North Holland: Elsevier, Studies in Applied Mechanics.
  • Benkhira, E. L.-H., Fakhar, R., Mandyly, Y. (2019). Analysis and numerical approximation of a contact problem involving nonlinear Hencky-type materials with nonlocal Coulomb’s friction law. Numer. Funct. Anal. Optim. 40(11):1291–1314. DOI: 10.1080/01630563.2019.1600546.
  • Lerguet, Z., Shillor, M., Sofonea, M. (2007). A frictional contact problem for an electro-viscoelastic body. Electron. J. Differ. Equations 170:1–16.
  • Duvaut, G. (1980). Free boundary problem connected with thermoelasticity and unilateral contact. In: Free Boundary Problems, Vol II. Rome: Istituto Nazionale di Alta Matematica Francesco Severi, p. 217–236.
  • Kikuchi, N., Oden, J. T. (1988). Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. Philadelphia, PA: SIAM, Studies in Applied and Numerical Mathematics.
  • Capatina, A. (2014). Variational Inequalities and Frictional Contact Problems, Vol. 3. Advances in Mechanics and Mathematics, Cham: Springer.
  • Glowinski, R., Le Tallec, P. (1989). Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. Philadelphia, PA: Studies in Applied Mathematics, SIAM.
  • Zhou, Y. T., Lee, K. Y. (2011). New, real fundamental solutions to the transient thermal contact problem in a piezoelectric strip under the coupling actions of a rigid punch and a convective heat supply. Int. J. Solids Struct. 48(19):2706–2717. DOI: 10.1016/j.ijsolstr.2011.05.020.
  • Zhou, Y. T., Lee, K. Y. (2011). Thermo-electro-mechanical contact behavior of a finite piezoelectric layer under a sliding punch with frictional heat generation. J. Mech. Phys. Solids 59(5):1037–1061. DOI: 10.1016/j.jmps.2011.02.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.