321
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Combined Genetic and Nutritional Risk Models of Triple Negative Breast Cancer

, , , , , & show all
Pages 955-963 | Received 12 Jun 2013, Accepted 10 Mar 2014, Published online: 14 Jul 2014

REFERENCES

  • Siegel R, Naishadham D, and Jemal A: Cancer statistics, 2013. CA Cancer J Clin 63, 11–30, 2013. doi:10.3322/caac.21166
  • Eroles P, Bosch A, Perez-Fidalgo JA, and Lluch A: Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev 38, 698–707, 2012. doi:10.1016/j.ctrv.2011.11.005
  • Brinkman JA and El-Ashry D: ER re-expression and re-sensitization to endocrine therapies in ER-negative breast cancers. J Mammary Gland Biol Neoplasia 14, 67–78, 2009. doi:10.1007/s10911-009-9113-0
  • Alli E, Sharma VB, Sunderesakumar P, and Ford JM: Defective repair of oxidative dna damage in triple-negative breast cancer confers sensitivity to inhibition of poly(ADP-ribose) polymerase. Cancer Res 69, 3589–3596, 2009. doi:10.1158/0008-5472.CAN-08-4016
  • Walsh MD, Buchanan DD, Cummings MC, Pearson SA, Arnold ST, et al.: Lynch syndrome-associated breast cancers: clinicopathologic characteristics of a case series from the colon cancer family registry. Clin Cancer Res 16, 2214–2224, 2010. doi:10.1158/1078-0432.CCR-09-3058
  • Bartkova J, Tommiska J, Oplustilova L, Aaltonen K, Tamminen A, et al.: Aberrations of the MRE11-RAD50-NBS1 DNA damage sensor complex in human breast cancer: MRE11 as a candidate familial cancer-predisposing gene. Mol Oncol 2, 296–316, 2008. doi:10.1016/j.molonc.2008.09.007
  • Adams LS, Phung S, Yee N, Seeram NP, Li L, et al.: Blueberry phytochemicals inhibit growth and metastatic potential of MDA-MB-231 breast cancer cells through modulation of the phosphatidylinositol 3-kinase pathway. Cancer Res 70, 3594–3605, 2010. doi:10.1158/0008-5472.CAN-09-3565
  • Baglietto L, Krishnan K, Severi G, Hodge A, Brinkman M, et al.: Dietary patterns and risk of breast cancer. Br J Cancer 104, 524–531, 2011. doi:10.1038/sj.bjc.6606044
  • Meeran SM, Patel SN, Li Y, Shukla S, and Tollefsbol TO: Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS One 7, e37748, 2012. doi:10.1371/journal.pone.0037748
  • Campeau PM, Foulkes WD, and Tischkowitz MD: Hereditary breast cancer: new genetic developments, new therapeutic avenues. Hum Genet 124, 31–42, 2008. doi:10.1007/s00439-008-0529-1
  • Smith TR, Levine EA, Freimanis RI, Akman SA, Allen GO, et al.: Polygenic model of DNA repair genetic polymorphisms in human breast cancer risk. Carcinogenesis 29, 2132–2138, 2008. doi:10.1093/carcin/bgn193
  • Stevens KN, Vachon CM, and Couch FJ: Genetic susceptibility to triple-negative breast cancer. Cancer Res 73, 2025–2030, 2013. doi:10.1158/0008-5472.can-12-1699
  • Xie H, Xia K, Rong H, and Chen X: Genetic polymorphism in hOGG1 is associated with triple-negative breast cancer risk in Chinese Han women. Breast 22, 707–712, 2013. doi:10.1016/j.breast.2012.12.016
  • Jakovljevic J, Touillaud MS, Bondy ML, Singletary SE, Pillow PC, et al.: Dietary intake of selected fatty acids, cholesterol and carotenoids and estrogen receptor status in premenopausal breast cancer patients. Breast Cancer Res Treat 75, 5–14, 2002.
  • Ishitani K, Lin J, Manson JE, Buring JE, and Zhang SM: A prospective study of multivitamin supplement use and risk of breast cancer. Am J Epidemiol 167, 1197–1206, 2008. doi:10.1093/aje/kwn027
  • Rowe DL, Ozbay T, O’Regan RM, and Nahta R: Modulation of the BRCA1 protein and induction of apoptosis in triple negative breast cancer cell lines by the polyphenolic compound curcumin. Breast Cancer (Auckl) 3, 61–75, 2009.
  • Cheng WH: Impact of inorganic nutrients on maintenance of genomic stability. Environ Mol Mutagen 50, 349–360, 2009. doi:10.1002/em.20489
  • Boucher B, Cotterchio M, Kreiger N, Nadalin V, Block T, et al.: Validity and reliability of the Block98 food-frequency questionnaire in a sample of Canadian women. Public Health Nutrition 9, 84–93, 2006. doi:10.1079/Phn2005763
  • Johnson BA, Herring AH, Ibrahim JG, and Siega-Riz AM: Structured measurement error in nutritional epidemiology: applications in the Pregnancy, Infection, and Nutrition (PIN) Study. Journal of the American Statistical Association 102, 856–866, 2007.
  • Lin HY, Wang W, Liu YH, Soong SJ, York TP, et al.: Comparison of multivariate adaptive regression splines and logistic regression in detecting SNP-SNP interactions and their application in prostate cancer. J Hum Genet 53, 802–811, 2008. doi:10.1007/s10038-008-0313-z
  • Van Emburgh BO, Hu JJ, Levine EA, Mosley LJ, Case LD, et al.: Polymorphisms in drug metabolism genes, smoking, and p53 mutations in breast cancer. Mol Carcinog 47, 88–99, 2008. doi:10.1002/mc.20365
  • Willett WC, Howe GR, and Kushi LH: Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S–1228S; discussion, 1229S–1231S, 1997.
  • Harper JW, Elledge SJ: The DNA damage response: ten years after. Mol Cell 28, 739–745, 2007. doi:10.1016/j.molcel.2007.11.015
  • Li GM: Mechanisms and functions of DNA mismatch repair. Cell Res 18, 85–98, 2008. doi:10.1038/cr.2007.115
  • Zhang Y, Newcomb PA, Egan KM, Titus-Ernstoff L, Chanock S, et al.: Genetic polymorphisms in base-excision repair pathway genes and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 15, 353–358, 2006. doi:10.1158/1055-9965.EPI-05-0653
  • Parsons JL, Preston BD, O’Connor TR, and Dianov GL: DNA polymerase delta-dependent repair of DNA single strand breaks containing 3’-end proximal lesions. Nucleic Acids Res 35, 1054–1063, 2007. doi:10.1093/nar/gkl1115
  • Bergstralh DT and Sekelsky J: Interstrand crosslink repair: can XPF-ERCC1 be let off the hook? Trends Genet 24, 70–76, 2008. doi:10.1016/j.tig.2007.11.003
  • Sugasawa K: Xeroderma pigmentosum genes: functions inside and outside DNA repair. Carcinogenesis 29, 455–465, 2008. doi:10.1093/carcin/bgm282
  • Kuligina E, Grigoriev MY, Suspitsin EN, Buslov KG, Zaitseva OA, et al.: Microsatellite instability analysis of bilateral breast tumors suggests treatment-related origin of some contralateral malignancies. J Cancer Res Clin Oncol 133, 57–64, 2007. doi:10.1007/s00432-006-0146-0
  • Moinfar F, Beham A, Friedrich G, Deutsch A, Hrzenjak A, et al.: Macro-environment of breast carcinoma: frequent genetic alterations in the normal appearing skins of patients with breast cancer. Mod Pathol 21, 639–646, 2008. doi:10.1038/modpathol.2008.28
  • Silva SN, Tomar M, Paulo C, Gomes BC, Azevedo AP, et al.: Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51. Cancer Epidemiol 34, 85–92, 2010. doi:10.1016/j.canep.2009.11.002
  • Ming-Shiean H, Yu JC, Wang HW, Chen ST, Hsiung CN, et al.: Synergistic effects of polymorphisms in DNA repair genes and endogenous estrogen exposure on female breast cancer risk. Ann Surg Oncol 17, 760–771, 2010.
  • Smith TR, Liu-Mares W, Van Emburgh BO, Levine EA, Allen GO, et al.: Genetic polymorphisms of multiple DNA repair pathways impact age at diagnosis and TP53 mutations in breast cancer. Carcinogenesis 32, 1354–1360, 2011. doi:10.1093/carcin/bgr117
  • Gibson RS, Bailey KB, Gibbs M, and Ferguson EL: A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr Bull 31, S134–S146, 2010.
  • Farquharson MJ, Al-Ebraheem A, Geraki K, Leek R, Jubb A, et al.: Zinc presence in invasive ductal carcinoma of the breast and its correlation with oestrogen receptor status. Phys Med Biol 54, 4213–4223, 2009. doi:10.1088/0031-9155/54/13/016
  • Levenson CW and Somers RC: Nutritionally regulated biomarkers for breast cancer. Nutr Rev 66, 163–166, 2008. doi:10.1111/j.1753-4887.2008.00020.x
  • Tinoco-Veras CM, Bezerra Sousa MS, da Silva BB, Franciscato Cozzolino SM, Viana Pires L, et al.: Analysis of plasma and erythrocyte zinc levels in premenopausal women with breast cancer. Nutr Hosp 26, 293–297, 2011. doi:10.1590/S0212-16112011000200008
  • Ho E: Zinc deficiency, DNA damage and cancer risk. J Nutr Biochem 15, 572–578, 2004. doi:10.1016/j.jnutbio.2004.07.005
  • Yan M, Song Y, Wong CP, Hardin K, and Ho E: Zinc deficiency alters DNA damage response genes in normal human prostate epithelial cells. J Nutr 138, 667–673, 2008.
  • Dar NA, Mir MM, Salam I, Malik MA, Gulzar GM, et al.: Association between copper excess, zinc deficiency, and TP53 mutations in esophageal squamous cell carcinoma from Kashmir Valley, India—a high risk area. Nutr Cancer 60, 585–591, 2008. doi:10.1080/01635580802290231
  • Maruti SS, Ulrich CM, and White E: Folate and one-carbon metabolism nutrients from supplements and diet in relation to breast cancer risk. Am J Clin Nutr 89, 624–633, 2009. doi:10.3945/ajcn.2008.26568
  • Zhang SM, Hankinson SE, Hunter DJ, Giovannucci EL, Colditz GA, et al.: Folate intake and risk of breast cancer characterized by hormone receptor status. Cancer Epidemiol Biomarkers Prev 14, 2004–2008, 2005. doi:10.1158/1055-9965.EPI-05-0083
  • Shrubsole MJ, Shu XO, Li HL, Cai H, Yang G, et al.: Dietary B vitamin and methionine intakes and breast cancer risk among Chinese women. Am J Epidemiol 173, 1171–1182, 2011. doi:10.1093/aje/kwq491
  • Zhang CX, Ho SC, Chen YM, Lin FY, Fu JH, et al.: Dietary folate, vitamin B6, vitamin B12 and methionine intake and the risk of breast cancer by oestrogen and progesterone receptor status. The British Journal of Nutrition 106, 936–943, 2011. doi:10.1017/S0007114511001140
  • Xu X and Chen J: One-carbon metabolism and breast cancer: an epidemiological perspective. J Genet Genomics 36, 203–214, 2009. doi:10.1016/S1673-8527(08)60108-3
  • Cho E, Holmes M, Hankinson SE, and Willett WC: Nutrients involved in one-carbon metabolism and risk of breast cancer among premenopausal women. Cancer Epidemiol Biomarkers Prev 16, 2787–2790, 2007. doi:10.1158/1055-9965.EPI-07-0683
  • Ma E, Iwasaki M, Junko I, Hamada GS, Nishimoto IN, et al.: Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Brazilian women. BMC Cancer 9, 122, 2009. doi:10.1186/1471-2407-9-122
  • Lewis SJ, Harbord RM, Harris R, and Smith GD: Meta-analyses of observational and genetic association studies of folate intakes or levels and breast cancer risk. J Natl Cancer Inst 98, 1607–1622, 2006. doi:10.1093/jnci/djj440
  • Larsson SC, Giovannucci E, and Wolk A: Folate and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 99, 64–76, 2007. doi:10.1093/jnci/djk006
  • Gao CM, Tang JH, Cao HX, Ding JH, Wu JZ, et al.: MTHFR polymorphisms, dietary folate intake and breast cancer risk in Chinese women. J Hum Genet 54, 414–418, 2009. doi:10.1038/jhg.2009.57
  • Mignone LI, Giovannucci E, Newcomb PA, Titus-Ernstoff L, Trentham-Dietz A, et al.: Dietary carotenoids and the risk of invasive breast cancer. Int J Cancer 124, 2929–2937, 2009. doi:10.1002/ijc.24334
  • Rock CL, Flatt SW, Natarajan L, Thomson CA, Bardwell WA, et al.: Plasma carotenoids and recurrence-free survival in women with a history of breast cancer. J Clin Oncol 23, 6631–6638, 2005. doi:10.1200/JCO.2005.19.505
  • Thomson CA, Stendell-Hollis NR, Rock CL, Cussler EC, Flatt SW, et al.: Plasma and dietary carotenoids are associated with reduced oxidative stress in women previously treated for breast cancer. Cancer Epidemiol Biomarkers Prev 16, 2008–2015, 2007. doi:10.1158/1055-9965.EPI-07-0350
  • Cui Y, Lu Z, Bai L, Shi Z, Zhao WE, et al.: beta-carotene induces apoptosis and up-regulates peroxisome proliferator-activated receptor gamma expression and reactive oxygen species production in MCF-7 cancer cells. Eur J Cancer 43, 2590–2601, 2007. doi:10.1016/j.ejca.2007.08.015
  • Garcia-Closas M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, et al.: Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 45, 392–398, 398e1-2, 2013. doi:10.1038/ng.2561
  • Khan SI, Aumsuwan P, Khan IA, Walker LA, and Dasmahapatra AK: Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chemical research in toxicology 25, 61–73, 2012. doi:10.1021/tx200378c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.