185
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Vitamin E, γ-tocotrienol, Protects Against Buthionine Sulfoximine-Induced Cell Death by Scavenging Free Radicals in SH-SY5Y Neuroblastoma Cells

, , , &
Pages 507-517 | Received 17 Jun 2015, Accepted 18 Oct 2015, Published online: 23 Mar 2016

References

  • Gorrini C, Harris IS, and Mak TW: Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12, 931–947, 2013. doi: 10.1038/nrd4002
  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, et al.: Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B 39, 44–84, 2007. doi: 10.1016/j.biocel.2006.07.001
  • Sena LA and Chandel NS: Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48, 158–167, 2012. doi: 10.1016/j.molcel.2012.09.025
  • Valko M, Rhodes CJ, Moncol J, Izakovic M, and Mazur M: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160, 1–40, 2006. doi: 10.1016/j.cbi.2005.12.009
  • Evans MD, Dizdaroglu M, and Cooke MS: Oxidative DNA damage and disease: induction, repair and significance. Mutat Res-Rev Mutat 567, 1–61, 2004. doi: 10.1016/j.mrrev.2003.11.001
  • Halliwell B: Oxidative stress and neurodegeneration: where are we now? J Neurochem 97, 1634–1658, 2006. doi: 10.1111/j.1471-4159.2006.03907.x
  • Raj L, Ide T, Gurkar AU, Foley M, Schenone M, et al.: Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475, 231–234, 2011. doi: 10.1038/nature10167
  • Luo J, Solimini NL, and Elledge SJ: Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136, 823–837, 2009. doi: 10.1016/j.cell.2009.02.024
  • Zhang Q, Ma Y, Cheng Y-F, Li W-J, Zhang Z, et al.: Involvement of reactive oxygen species in 2-methoxyestradiol-induced apoptosis in human neuroblastoma cells. Cancer Lett 313, 201–210, 2011. doi: 10.1016/j.canlet.2011.09.005
  • Conklin KA: Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3, 294–300, 2004. doi: 10.1177/1534735404270335
  • Barrera G: Oxidative stress and lipid peroxidation products in cancer progression and therapy. ISRN Oncol 2012, 21, 2012. doi: 10.5402/2012/137289
  • Lipshultz SE, Cochran TR, Franco VI, and Miller TL: Treatment-related cardiotoxicity in survivors of childhood cancer. Nat Rev Clin Oncol 10, 697–710, 2013. doi: 10.1038/nrclinonc.2013.195
  • Fuchs-Tarlovsky V: Role of antioxidants in cancer therapy. Nutrition 29, 15–21, 2013. doi: 10.1016/j.nut.2012.02.014
  • Moss RW: Do antioxidants interfere with radiation therapy for cancer? Integr Cancer Ther 6, 281–292, 2007. doi: 10.1177/1534735407305655
  • Sceneay J, Liu MCP, Chen A, Wong CSF, Bowtell DDL, et al.: The antioxidant N-acetylcysteine prevents HIF-1 stabilization under hypoxia in vitro but does not affect tumorigenesis in multiple breast cancer models in vivo. PloS ONE 8, e66388, 2013. doi: 10.1371/journal.pone.0066388
  • Martinez EE, Anderson PD, Logan M, and Abdulkadir SA: Antioxidant treatment promotes prostate epithelial proliferation in Nkx3.1 mutant mice. PloS ONE 7, e46792, 2012. doi: 10.1371/journal.pone.0046792
  • Sayin VI, Ibrahim MX, Larsson E, Nilsson JA, Lindahl P, et al.: Antioxidants accelerate lung cancer progression in mice. Sci Transl Med 6, 221ra15, 2014. doi: 10.1126/scitranslmed.3007653
  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, et al.: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780–783, 2009. doi: 10.1038/nature07733
  • Brigelius-Flohé R and Traber MG: Vitamin E: function and metabolism. FASEB J 13, 1145–1155, 1999
  • Sen CK, Khanna S, and Roy S: Tocotrienols: Vitamin E beyond tocopherols. Life Sci 78, 2088–2098, 2006. doi: 10.1016/j.lfs.2005.12.001
  • Sen CK, Khanna S, and Roy S: Tocotrienols in health and disease: The other half of the natural vitamin E family. Mol Aspects of Med 28, 692–728, 2007. doi: 10.1016/j.mam.2007.03.001
  • Mazlan M, Then S-M, Mat Top G, and Wan Ngah WZ: Comparative effects of α-tocopherol and γ-tocotrienol against hydrogen peroxide induced apoptosis on primary-cultured astrocytes. J Neurol Sci 243, 5–12, 2006. doi: 10.1016/j.jns.2005.10.006
  • Then S-M, Mazlan M, Mat Top G, and Wan Ngah WZ: Is vitamin E toxic to neuron cells? Cell Mol Neurobiol 29, 485–496, 2009. doi: 10.1007/s10571-008-9340-8
  • Then S-M, Wan Ngah WZ, Mat Top G, and Mazlan M: Comparison of the effects of α-tocopherol and γ-tocotrienol against oxidative stress in two different neuronal cultures. Sains Malays 39, 145–156, 2010
  • Griffith OW: Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem 257, 13704–13712, 1982
  • Mailloux RJ, McBride SL, and Harper M-E: Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics. Trends Biochem Sci 38, 592–602, 2013. doi: 10.1016/j.tibs.2013.09.001
  • Marengo B, De Ciucis C, Verzola D, Pistoia V, Raffaghello L, et al.: Mechanisms of BSO (L-buthionine-S,R-sulfoximine)-induced cytotoxic effects in neuroblastoma. Free Radic Biol Med 44, 474–482, 2008. doi: 10.1016/j.freeradbiomed.2007.10.031
  • Anderson CP, Tsai JM, Meek WE, Liu R-M, Tang Y, et al.: Depletion of glutathione by buthionine sulfoximine is cytotoxic for human neuroblastoma cell lines via apoptosis. Exp Cell Res 246, 183–192, 1999. doi: 10.1006/excr.1998.4303
  • Anderson CP and Reynolds CP: Synergistic cytotoxicity of buthionine sulfoximine (BSO) and intensive melphalan (L-PAM) for neuroblastoma cell lines established at relapse after myeloablative therapy. Bone Marrow Transplant 30, 135–140, 2002.
  • Yang B, Keshelava N, Anderson CP, and Reynolds CP: Antagonism of buthionine sulfoximine cytotoxicity for human neuroblastoma cell lines by hypoxia is reversed by the bioreductive agent tirapazamine. Cancer Res 63, 1520–1526, 2003.
  • Son Y, Cheong Y-K, Kim N-H, Chung H-T, Kang DG, et al.: Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 2011. doi: 10.1155/2011/792639
  • Kuwabara M, Asanuma T, Niwa K, and Inanami O: Regulation of cell survival and death signals induced by oxidative stress. J Clin Biochem Nutr 43, 51–57, 2008
  • Marengo B, Raffaghello L, Pistoia V, Cottalasso D, Pronzato MA, et al.: Reactive oxygen species: biological stimuli of neuroblastoma cell response. Cancer Lett 228, 111–116, 2005. doi: 10.1016/j.canlet.2005.01.046
  • Spandidos A, Wang X, Wang H, and Seed B: PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res 38, D792–D799, 2010. doi: 10.1093/nar/gkp1005
  • Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, et al.: Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9, 252–263, 2002. doi: 10.1038/sj/cdd/4400959
  • Domenicotti C, Marengo B, Verzola D, Garibotto G, Traverso N, et al.: Role of PKC-δ activity in glutathione-depleted neuroblastoma cells. Free Radic Biol Med 35, 504–516, 2003. doi: 10.1016/S0891-5849(03)00332-0
  • Estrela JM, Ortega A, and Obrador E: Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43, 143–181, 2006. doi: 10.1080/10408360500523878
  • Anderson CP, Keshelava N, Satake N, Meek WH, and Reynolds CP: Synergism of buthionine sulfoximine and melphalan against neuroblastoma cell lines derived after disease progression. Med Pediatr Oncol 35, 659–662, 2000. doi: 10.1002/1096-911x(20001201)35:6<659::aid-mpo38>3.0.co;2-4
  • Yap WN, Chang PN, Han HY, Lee DTW, Ling MT, et al.: [gamma]-Tocotrienol suppresses prostate cancer cell proliferation and invasion through multiple-signalling pathways. Br J Cancer 99, 1832–1841, 2008.
  • Yano Y, Satoh H, Fukumoto K, Kumadaki I, Ichikawa T, et al.: Induction of cytotoxicity in human lung adenocarcinoma cells by 6-O-carboxypropyl-α-tocotrienol, a redox-silent derivative of α-tocotrienol. Int J Cancer 115, 839–846, 2005. doi: 10.1002/ijc.20809
  • Behery FA, Elnagar AY, Akl MR, Wali VB, Abuasal B, et al.: Redox-silent tocotrienol esters as breast cancer proliferation and migration inhibitors. Bioorg Med Chem 18, 8066–8075, 2010. doi: 10.1016/j.bmc.2010.09.009
  • Nesaretnam K, Dorasamy S, and Darbre PD: Tocotrienols inhibit growth of ZR-75-1 breast cancer cells. Int J Food Sci Nutr 51(Suppl), S95–103, 2000.
  • Malaviya A and Sylvester PW: Synergistic antiproliferative effects of combined γ-tocotrienol and PPARγ antagonist treatment are mediated through PPARγ-independent mechanisms in breast cancer cells. PPAR Res 2014, 18, 2014. doi: 10.1155/2014/439146
  • Yamada T, Egashira N, Bando A, Nishime Y, Tonogai Y, et al.: Activation of p38 MAPK by oxidative stress underlying epirubicin-induced vascular endothelial cell injury. Free Rad Biol Med 52, 1285–1293, 2012. doi: 10.1016/j.freeradbiomed.2012.02.003
  • Ki Y-W, Park JH, Lee JE, Shin IC, and Koh HC: JNK and p38 MAPK regulate oxidative stress and the inflammatory response in chlorpyrifos-induced apoptosis. Toxicol Lett 218, 235–245, 2013. doi: 10.1016/j.toxlet.2013.02.003
  • Gutierrez-Uzquiza A, Arechederra M, Bragado P, Aguirre-Ghiso JA, and Porras A: p38[alpha] mediates cell survival in response to oxidative stress via induction of antioxidant genes. Effect on the p70S6K pathway. J Biol Chem 287, 2632–2642, 2011. doi: 10.1074/jbc.M111.323709
  • Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, et al.: Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275, 12200–12206, 2000. doi: 10.1074/jbc.275.16.12200
  • Aquilano K, Baldelli S, Cardaci S, Rotilio G, and Ciriolo MR: Nitric oxide is the primary mediator of cytotoxicity induced by GSH depletion in neuronal cells. J Cell Sci 124, 1043–1054, 2011. doi: 10.1242/jcs.077149
  • Cargnello M and Roux PP: Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75, 50–83, 2011. doi: 10.1128/mmbr.00031-10
  • Meng J, Dai B, Fang B, Bekele BN, Bornmann WG, et al.: Combination treatment with MEK and AKT inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. PloS ONE 5, e14124, 2010. doi: 10.1371/journal.pone.0014124
  • Marampon F, Ciccarelli C, and Zani MB: Down-regulation of c-Myc following MEK/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle-derived human tumors. Mol Cancer 5, 31, 2006. doi: 10.1186/1476-4598-5-31
  • Roberts PJ and Der CJ: Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291–3310, 2007. doi: 10.1038/sj.onc.1210422
  • Basu A, Woolard MD, and Johnson CL: Involvement of protein kinase C-delta in DNA damage-induced apoptosis. Cell Death Differ 8, 899–908, 2001.
  • Soltoff SP: Rottlerin: an inappropriate and ineffective inhibitor of PKCδ;. Trends Pharmacol Sci 28, 453–458, 2007. doi: 10.1016/j.tips.2007.07.003
  • Czabotar PE, Lessene G, Strasser A, and Adams JM: Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15, 49–63, 2014. doi: 10.1038/nrm3722

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.