192
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Breast Cancer Genetic and Molecular Subtype Impacts Response to Omega-3 Fatty Acid Ethyl Esters

, , &
Pages 1021-1033 | Received 11 Mar 2015, Accepted 08 Mar 2016, Published online: 01 Jul 2016

References

  • Alfano CM, Imayama I, Neuhouser ML, Kiecolt-Glaser JK, Smith AW, et al.: Fatigue, inflammation, and omega-3 and omega-6 fatty acid intake among breast cancer survivors. J Clin Oncol 30, 1280–1287, 2012. doi: 10.1200/JCO.2011.36.4109
  • Chajes V, Torres-Mejia G, Biessy C, Ortega-Olvera C, Angeles-Llerenas A, et al.: omega-3 and omega-6 Polyunsaturated fatty acid intakes and the risk of breast cancer in Mexican women: impact of obesity status. Cancer Epidemiol Biomarkers Prev 21, 319–326, 2012. doi: 10.1158/1055-9965.EPI-11-0896
  • Dalal JJ, Kasliwal RR, Dutta AL, Sawhney JP, Iyengar SS, et al.: Role of omega-3 ethyl ester concentrate in reducing sudden cardiac death following myocardial infarction and in management of hypertriglyceridemia: an Indian consensus statement. Indian Heart J 64, 503–507, 2012. doi: 10.1016/j.ihj.2012.08.004
  • Pu H, Guo Y, Zhang W, Huang L, Wang G, et al.: Omega-3 polyunsaturated fatty acid supplementation improves neurologic recovery and attenuates white matter injury after experimental traumatic brain injury. J Cereb Blood Flow Metab 33, 1474–1484, 2013. doi: 10.1038/jcbfm.2013.108
  • Sczaniecka AK, Brasky TM, Lampe JW, Patterson RE, and White E: Dietary intake of specific fatty acids and breast cancer risk among postmenopausal women in the VITAL cohort. Nutr Cancer 64, 1131–1142, 2012. doi: 10.1080/01635581.2012.718033
  • Murff HJ, Shu XO, Li H, Yang G, Wu X, et al.: Dietary polyunsaturated fatty acids and breast cancer risk in Chinese women: a prospective cohort study. Int J Cancer 128, 1434–1441, 2011. doi: 10.1002/ijc.25703
  • Saadatian-Elahi M, Norat T, Goudable J, and Riboli E: Biomarkers of dietary fatty acid intake and the risk of breast cancer: a meta-analysis. Int J Cancer 111, 584–591, 2004. doi: 10.1002/ijc.20284
  • Zheng JS, Hu XJ, Zhao YM, Yang J, and Li D: Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ 346, f3706, 2013. doi: 10.1136/bmj.f3706
  • Fahrmann JF, Ballester OF, Ballester G, Witte TR, Salazar AJ, et al.: Inhibition of nuclear factor kappa B activation in early-stage chronic lymphocytic leukemia by omega-3 fatty acids. Cancer Invest 31, 24–38, 2013. doi: 10.3109/07357907.2012.743553
  • Yang YC, Lii CK, Wei YL, Li CC, Lu CY, et al.: Docosahexaenoic acid inhibition of inflammation is partially via cross-talk between Nrf2/heme oxygenase 1 and IKK/NF-kappaB pathways. J Nutr Biochem 24, 204–212, 2013. doi: 10.1016/j.jnutbio.2012.05.003
  • Mbodji K, Charpentier C, Guerin C, Querec C, Bole-Feysot C, et al.: Adjunct therapy of n-3 fatty acids to 5-ASA ameliorates inflammatory score and decreases NF-kappaB in rats with TNBS-induced colitis. J Nutr Biochem 24, 700–705, 2013. doi: 10.1016/j.jnutbio.2012.03.022
  • Siriwardhana N, Kalupahana NS, Fletcher S, Xin W, Claycombe KJ, et al.: n-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiotensinogen and other inflammatory adipokines in part via NF-kappaB-dependent mechanisms. J Nutr Biochem 23, 1661–1667, 2012. doi: 10.1016/j.jnutbio.2011.11.009
  • Son YH, Jeong YT, Lee KA, Choi KH, Kim SM, et al.: Roles of MAPK and NF-kappaB in interleukin-6 induction by lipopolysaccharide in vascular smooth muscle cells. J Cardiovasc Pharmacol 51, 71–77, 2008. doi: 10.1097/FJC.0b013e31815bd23d
  • Catz SD, and Johnson JL: Transcriptional regulation of bcl-2 by nuclear factor kappa B and its significance in prostate cancer. Oncogene 20, 7342–7451, 2001. doi: 10.1038/sj.onc.1204926
  • Kaltschmidt B, Linker RA, Deng J, and Kaltschmidt C: Cyclooxygenase-2 is a neuronal target gene of NF-kappaB. BMC Mol Biol 3, 16, 2002.
  • Borghaei RC, Rawlings PL, Jr., Javadi M, and Woloshin J: NF-kappaB binds to a polymorphic repressor element in the MMP-3 promoter. Biochem Biophys Res Commun 316, 182–188, 2004. doi: 10.1016/j.bbrc.2004.02.030
  • Ham M, and Moon A: Inflammatory and microenvironmental factors involved in breast cancer progression. Arch Pharm Res 36, 1419–1431, 2013. doi: 10.1007/s12272-013-0271-7
  • Bryhn M, Hansteen H, Schanche T, and Aakre SE: The bioavailability and pharmacodynamics of different concentrations of omega-3 acid ethyl esters. Prostaglandins Leukot Essent Fatty Acids 75, 19–24, 2006. doi: 10.1016/j.plefa.2006.04.003
  • Rupp H: Omacor (prescription omega-3-acid ethyl esters 90): from severe rhythm disorders to hypertriglyceridemia. Adv Ther 26, 675–690, 2009. doi: 10.1007/s12325-009-0045-2
  • Raica M, Jung I, Cimpean AM, Suciu C, and Muresan AM: From conventional pathologic diagnosis to the molecular classification of breast carcinoma: are we ready for the change?. Rom J Morphol Embryol 50, 5–13, 2009.
  • Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, et al.: Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc Natl Acad Sci USA 109, 9551–9556, 2012. doi: 10.1073/pnas.1200019109
  • Cui PH, Rawling T, Bourget K, Kim T, Duke CC, et al.: Antiproliferative and antimigratory actions of synthetic long chain n-3 monounsaturated fatty acids in breast cancer cells that overexpress cyclooxygenase-2. J Med Chem 55, 7163–7172, 2012. doi: 10.1021/jm300673z
  • Horia E, and Watkins BA: Complementary actions of docosahexaenoic acid and genistein on COX-2, PGE2 and invasiveness in MDA-MB-231 breast cancer cells. Carcinogenesis 28, 809–815, 2007. doi: 10.1093/carcin/bgl183
  • Calder PC: n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83, 1505S–1519S, 2006.
  • Simopoulos AP: Genetic variants in the metabolism of omega-6 and omega-3 fatty acids: their role in the determination of nutritional requirements and chronic disease risk. Exp Biol Med (Maywood) 235, 785–795, 2010. doi: 10.1258/ebm.2010.009298
  • Wang TM, Chen CJ, Lee TS, Chao HY, Wu WH, et al.: Docosahexaenoic acid attenuates VCAM-1 expression and NF-kappaB activation in TNF-alpha-treated human aortic endothelial cells. J Nutr Biochem 22, 187–194, 2011. doi: 10.1016/j.jnutbio.2010.01.007
  • Yang L, Yuan J, Liu L, Shi C, Wang L, et al.: Alpha-linolenic acid inhibits human renal cell carcinoma cell proliferation through PPAR-gamma activation and COX-2 inhibition. Oncol Lett 6, 197–202, 2013. doi: 10.3892/ol.2013.1336
  • Rovito D, Giordano C, Vizza D, Plastina P, Barone I, et al.: Omega-3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARgamma activation in MCF-7 breast cancer cells. J Cell Physiol 228, 1314–1322, 2013. doi: 10.1002/jcp.24288
  • Tsubouchi Y, Sano H, Kawahito Y, Mukai S, Yamada R, et al.: Inhibition of human lung cancer cell growth by the peroxisome proliferator-activated receptor-gamma agonists through induction of apoptosis. Biochem Biophys Res Commun 270, 400–405, 2000. doi: 10.1006/bbrc.2000.2436
  • Obata T, Nagakura T, Masaki T, Maekawa K, and Yamashita K: Eicosapentaenoic acid inhibits prostaglandin D2 generation by inhibiting cyclo-oxygenase-2 in cultured human mast cells. Clin Exp Allergy 29, 1129–1135, 1999.
  • Henderson CD, Black HS, and Wolf JE, Jr.: Influence of omega-3 and omega-6 fatty acid sources on prostaglandin levels in mice. Lipids 24, 502–505, 1989.
  • Yang P, Chan D, Felix E, Cartwright C, Menter DG, et al.: Formation and antiproliferative effect of prostaglandin E(3) from eicosapentaenoic acid in human lung cancer cells. J Lipid Res 45, 1030–1039, 2004. doi: 10.1194/jlr.M300455-JLR200
  • Kim SL, Trang KT, Kim SH, Kim IH, Lee SO, et al.: Parthenolide suppresses tumor growth in a xenograft model of colorectal cancer cells by inducing mitochondrial dysfunction and apoptosis. Int J Oncol 41, 1547–1553, 2012. doi: 10.3892/ijo.2012.1587
  • Manni A, Xu H, Washington S, Aliaga C, Cooper T, et al.: The impact of fish oil on the chemopreventive efficacy of tamoxifen against development of N-methyl-N-nitrosourea-induced rat mammary carcinogenesis. Cancer Prev Res (Phila) 3, 322–330, 2010. doi: 10.1158/1940-6207.CAPR-09-0173
  • Cao W, Ma Z, Rasenick MM, Yeh S, and Yu J: N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth. PLoS One 7, e52838, 2012. doi: 10.1371/journal.pone.0052838
  • Sato SB, Park J, Kawamoto J, Sato S, and Kurihara T: Inhibition of constitutive Akt (PKB) phosphorylation by docosahexaenoic acid in the human breast cancer cell line MDA-MB-453. Biochim Biophys Acta 1831, 306–313, 2013. doi: 10.1016/j.bbalip.2012.10.004
  • Fawzy MS, Aly NM, Shalaby SM, El-Sawy WH, and Abdul-Maksoud RS: Cyclooxygenase-2 169C>G and 8473T>C gene polymorphisms and prostaglandin E2 level in breast cancer: a case-control study. Gene 527, 601–605, 2013. doi: 10.1016/j.gene.2013.06.007
  • Cormier H, Rudkowska I, Paradis AM, Thifault E, Garneau V, et al.: Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 PUFA supplementation. Nutrients 4, 1026–1041, 2012. doi: 10.3390/nu4081026
  • Solakivi T, Kunnas T, Jaakkola O, Renko J, Lehtimaki T, et al.: Delta-6-desaturase gene polymorphism is associated with lipoprotein oxidation in vitro. Lipids Health Dis 12, 80, 2013. doi: 10.1186/1476-511X-12-80
  • Singh S, Shi Q, Bailey ST, Palczewski MJ, Pardee AB, et al.: Nuclear factor-kappaB activation: a molecular therapeutic target for estrogen receptor-negative and epidermal growth factor receptor family receptor-positive human breast cancer. Mol Cancer Ther 6, 1973–1982, 2007. doi: 10.1158/1535-7163.MCT-07-0063
  • Lerebours F, Vacher S, Andrieu C, Espie M, Marty M, et al.: NF-kappa B genes have a major role in inflammatory breast cancer. BMC Cancer 8, 41, 2008. doi: 10.1186/1471-2407-8-41
  • Basu A, Mohanty S, and Sun B: Differential sensitivity of breast cancer cells to tumor necrosis factor-alpha: involvement of protein kinase C. Biochem Biophys Res Commun 280, 883–891, 2001. doi: 10.1006/bbrc.2000.4209
  • Yamamoto K, Itoh T, Abe D, Shimizu M, Kanda T, et al.: Identification of putative metabolites of docosahexaenoic acid as potent PPARgamma agonists and antidiabetic agents. Bioorg Med Chem Lett 15, 517–522, 2005. doi: 10.1016/j.bmcl.2004.11.053
  • Krey G, Braissant O, L'Horset F, Kalkhoven E, Perroud M, et al.: Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 11, 779–791, 1997. doi: 10.1210/mend.11.6.0007
  • Shi H, Yu X, Li Q, Ye X, Gao Y, et al.: Association between PPAR-gamma and RXR-alpha gene polymorphism and metabolic syndrome risk: a case-control study of a Chinese Han population. Arch Med Res 43, 233–242, 2012. doi: 10.1016/j.arcmed.2012.03.006
  • Bagga D, Wang L, Farias-Eisner R, Glaspy JA, and Reddy ST: Differential effects of prostaglandin derived from omega-6 and omega-3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc Natl Acad Sci USA 100, 1751–1756, 2003. doi: 10.1073/pnas.0334211100
  • Szymczak M, Murray M, and Petrovic N: Modulation of angiogenesis by omega-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood 111, 3514–3521, 2008. doi: 10.1182/blood-2007-08-109934
  • Cai F, Sorg O, Granci V, Lecumberri E, Miralbell R, et al.: Interaction of omega-3 polyunsaturated fatty acids with radiation therapy in two different colorectal cancer cell lines. Clin Nutr 33, 164–170, 2014. doi: 10.1016/j.clnu.2013.04.005
  • Wei N, Wang B, Zhang QY, Mi MT, Zhu JD, et al.: Effects of different dietary fatty acids on the fatty acid compositions and the expression of lipid metabolic-related genes in mammary tumor tissues of rats. Nutr Cancer 60, 810–825, 2008. doi: 10.1080/01635580802192858
  • Apte SA, Cavazos DA, Whelan KA, and Degraffenried LA: A low dietary ratio of omega-6 to omega-3 Fatty acids may delay progression of prostate cancer. Nutr Cancer 65, 556–562, 2013. doi: 10.1080/01635581.2013.775316
  • Jiang W, Zhu Z, McGinley JN, El Bayoumy K, Manni A, et al.: Identification of a molecular signature underlying inhibition of mammary carcinoma growth by dietary N-3 fatty acids. Cancer Res 72, 3795–3806, 2012. doi: 10.1158/0008-5472.CAN-12-1047
  • Yee D, Favoni RE, Lippman ME, and Powell DR: Identification of insulin-like growth factor binding proteins in breast cancer cells. Breast Cancer Res Treat 18, 3–10, 1991.
  • Concin N, Zeillinger C, Tong D, Stimpfl M, Konig M, et al.: Comparison of p53 mutational status with mRNA and protein expression in a panel of 24 human breast carcinoma cell lines. Breast Cancer Res Treat 79, 37–46, 2003.
  • Bartek J, Iggo R, Gannon J, and Lane DP: Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene 5, 893–899, 1990.
  • Kovach JS, McGovern RM, Cassady JD, Swanson SK, Wold LE, et al.: Direct sequencing from touch preparations of human carcinomas: analysis of p53 mutations in breast carcinomas. J Natl Cancer Inst 83, 1004–1009, 1991.
  • Rakib MA, Lee WS, Kim GS, Han JH, Kim JO, et al.: Antiproliferative action of conjugated linoleic acid on human MCF-7 breast cancer cells mediated by enhancement of gap junctional intercellular communication through inactivation of NF- kappa B. Evid Based Complement Alternat Med 2013, 429393, 2013. doi: 10.1155/2013/429393
  • Yamaguchi N, Ito T, Azuma S, Ito E, Honma R, et al.: Constitutive activation of nuclear factor-kappaB is preferentially involved in the proliferation of basal-like subtype breast cancer cell lines. Cancer Sci 100, 1668–1674, 2009. doi: 10.1111/j.1349-7006.2009.01228.x
  • Matsumoto G, Namekawa J, Muta M, Nakamura T, Bando H, et al.: Targeting of nuclear factor kappaB Pathways by dehydroxymethylepoxyquinomicin, a novel inhibitor of breast carcinomas: antitumor and antiangiogenic potential in vivo. Clin Cancer Res 11, 1287–1293, 2005.
  • Brooks SC, Locke ER, and Soule HD: Estrogen receptor in a human cell line (MCF-7) from breast carcinoma. J Biol Chem 248, 6251–6253, 1973.
  • Leung BS, Qureshi S, and Leung JS: Response to estrogen by the human mammary carcinoma cell line CAMA-1. Cancer Res 42, 5060–5066, 1982.
  • Horwitz KB, Zava DT, Thilagar AK, Jensen EM, and McGuire WL: Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res 38, 2434–2437, 1978.
  • Subik K, Lee JF, Baxter L, Strzepek T, Costello D, et al.: The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl) 4, 35–41, 2010.
  • Riaz M, Elstrodt F, Hollestelle A, Dehghan A, Klijn JG, et al.: Low-risk susceptibility alleles in 40 human breast cancer cell lines. BMC Cancer 9, 236, 2009. doi: 10.1186/1471-2407-9-236
  • Gregory H, Thomas CE, Willshire IR, Young JA, Anderson H, et al.: Epidermal and transforming growth factor alpha in patients with breast tumours. Br J Cancer 59, 605–609, 1989.
  • Leung BS, Stout L, Zhou L, Ji HJ, Zhang QQ, et al.: Evidence of an EGF/TGE-alpha–independent pathway for estrogen-regulated cell proliferation. J Cell Biochem 46, 125–133, 1991. doi: 10.1002/jcb.240460206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.