296
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Sulforaphane Regulates NFE2L2/Nrf2-Dependent Xenobiotic Metabolism Phase II and Phase III Enzymes Differently in Human Colorectal Cancer and Untransformed Epithelial Colon Cells

, , , , &
Pages 1338-1348 | Received 15 Jan 2016, Accepted 04 Jul 2016, Published online: 16 Sep 2016

References

  • Higdon JV, Delage B, Williams DE, and Dashwood RH: Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res 55, 224–236, 2007.
  • Fahey JW, Zalcmann AT, and Talalay P: The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56, 5–51, 2001.
  • Guerrero-Beltrán CE, Caderón-Olivier M, Pedraza-Chaverri J, and Chirino YI: Protective effect of sulforaphane against oxidative stress: recent advances. Esp Toxicol Pathol 64, 503–508, 2012.
  • Shen G and Kong AN: Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transporters. Biopharm Drug Dispos 30, 345–355, 2009.
  • McWalter GK, Higgins LG, McLellan LI, Henderson CJ, Song L, et al.: Transcription factor Nrf2 is essential for induction of NAD(P)H:quinone oxidoreductase 1, glutathione S-transferases, and glutamate cysteine ligase by broccoli seeds and isothiocyanates. J Nutr 134, 3499S–3506S, 2004.
  • Vollrath V, Wielandt AM, Iruretagoyena M, and Chianale J: Role of Nrf2 in the regulation of the Mrp2 (ABCC2) gene. Biochem J 395, 599–609, 2006.
  • Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, et al.: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev 13, 76–86, 1999.
  • Dhakshinamoorthy S and Jaiswal AK: Functional characterization and role of INrf2 in antioxidant response element-mediated expression and antioxidant induction of NAD(P)H: quinone oxidoreductase1 gene. Oncogene 20, 3906–3917, 2001.
  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, et al.: An Nrf2Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236, 313–322, 1997.
  • Venugopal R and Jaiswal AK: Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17, 3145–3156, 1998.
  • Kwak MK, Wakabayashi N, Greenlaw JL, Yamamoto M, and Kensler TW: Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Mol Cell Biol 23, 8786–8794, 2003.
  • Tripathi DN and Jena GB: Effect of melatonin on the expression of Nrf2 and NF-kappaB during cyclophosphamide induced urinary bladder injury in rat. J Pineal Res 48, 324–331, 2010.
  • Kensler TW, Wakabayashi N, and Biswal S: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47, 89–116, 2007.
  • Lau A, Villeneuve NF, Sun Z, Wong PK, and Zhang DD: Dual roles of Nrf2 in cancer. Pharmacol Res 58, 262–270, 2008.
  • Jaramillo MC and Zhang DD: The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev 27, 2179–2191, 2013.
  • Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, et al.: Nrf2 enhances resistance of cancer cells to chemoptherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29 1235–1243, 2008.
  • Moon J and Giaccia A: Dual roles of Nrf2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic Biol Med 79, 292–299, 2015.
  • Ji L, Wei Y, Jiang T, and Wang S: Correlation of Nrf2, NQO1, MRP1, cmyc and p53 in colorectal cancer and their relationships to clinicopathologic features and survival. Int J Clin Exp Pathol 7, 1124–1131, 2014.
  • Ji L, Li H, Gao P, Shang G, Zhang DD, et al.: Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One 8, e63404, 2013.
  • Dinkova-Kostova AT, Fahey JW, and Talalay P: Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1). Methods Enzymol 382, 423–448, 2004.
  • Harris KE and Jeffery EH: Sulforaphane and erucin increase MRP1 and MRP2 in human carcinoma cell lines. J Nutr Biochem 19, 246–254, 2008.
  • De Larco JE, Park CA, Dronava H, and Furcht LT: Paradoxical roles for antioxidants in tumor prevention and eradication. Cancer Biol Ther 9, 362–370, 2010.
  • Tseng E, Kamath A, and Morris ME: Effect of organic isothiocyanates on the P-glycoprotein- and MRP1-mediated transport of daunomycin and vinblastine. Pharm Res 19, 1509–1515, 2002.
  • Qazi A, Pal J, Mait MP, Fulciniti M, Pelluru D, et al.: Anticancer activity of a broccoli derivative, sulforaphane, in barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Trans Oncol 3, 389–399, 2010.
  • Misiewicz I, Skupińska K, and Kasprzycka-Guttman T: Differential response of human healthy lymphoblastoid and CCRF-SB leukemia cells to sulforaphane and its two analogues: 2-oxohexyl isothiocyanate and alyssin. Pharmacol Rep 59, 80–87, 2007.
  • Schmid H and Karrer P: Synthese der racemischen und der optischaktivenformen des sulforaphans. Helv Chim Acta 31, 1497–1505, 1948.
  • Prochaska HJ and Santamaria AB: Direct measurement of NAD(P)H:quinone reductase from cells cultured in microtiter: a screening sssay for anticarcinogenic enzyme inducers. Anal Biochem 169, 328–336, 1988.
  • Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254, 1976.
  • Bratosin D, Mitrofan L, Palii C, Estaquier J, and Montreuil J: Novel fluorescence assay using calcein-AM for the determination of human erythrocyte viability and aging. Cytometry A 66, 78–84, 2005.
  • van der Kolk DM, de Vries EG, Noordhoek L, ven den Berg E, van der Pol MA, et al.: Activity and expression of the multidrug resistance proteins P-glycoprotein, MRP1, MRP2, MRP3 and MRP5 in de novo and relapsed acute myeloid leukemia. Leukemia 10, 1544–1553, 2001.
  • Bustin SA: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29, 23–39, 2002.
  • Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods 25, 402–408, 2001.
  • Skupinska K, Misiewicz-Krzeminska I, Stypulkowski R, Lubelska K, and Kasprzycka-Guttman T: Sulforaphane and its analogues inhibit CYP1A1 and CYP1A2 activity induced by benzo(a)pyrene. J Biochem Mol Toxicol 23, 18–28, 2009.
  • Wang M, Zhu JY, Chen S, Qing Y, Wu D, et al.: Effects of co-treatment with sulforaphane and autophagy modulators on uridine 5′-diphospho-glucuronosyltransferase 1A isoforms and cytochrome P450 3A4 expression in Caco-2 human colon cancer cells. Oncol Lett 8, 2407–2416, 2014.
  • Minarini A, Milelli A, Fimognari C, Simoni E, Turrini E, et al.: Exploring the effects of isothiocyanates on chemotherapeutic drugs. Expert Opin Drug Metab Toxicol 10, 25–38, 2014.
  • Yang YM, Noh K, Han CY, and Kim SG: Transactivation of genes encoding for phase II enzymes and phase III transporters by phytochemical antioxidants. Molecules 15, 6332–6348, 2010.
  • Nakata K, Tanaka Y, Nakano T, Adachi T, Tanaka H, et al.: Nuclear receptor-mediated transcriptional regulation in Phase I, II, and III xenobiotic metabolizing systems. Drug Metab Pharmacokinet 6, 437–457, 2006.
  • Milczarek M, Misiewicz-Krzemińska I, Lubelska K, and Wiktorska K: Combination treatment with 5-fluorouracil and isothiocyanates shows an antagonistic effect in Chinese hamster fibroblast cells line-V79. Acta Pol Pharm 68, 331–342, 2011.
  • Wang XF, Wu DM, Li BX, Lu YJ, and Yang BF: Synergistic inhibitory effect of sulforaphane and 5-fluorouracil in high and low metastasis cell lines of salivary gland adenoid cystic carcinoma. Phytother Res 23, 303–307, 2009.
  • Kansanen E, Kousmanen SM, Leinonen H, Levonen H, and Levonen AL: The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol 1, 45–49, 2013.
  • Johnson DR and Klaassen CD: Regulation of rat multidrug resistance protein 2 by classes of prototypical microsomal enzyme inducers that activate distinct transcription pathways. Toxicol Sci 67, 182–189, 2002.
  • Winski SL, Koutalos Y, Bentley DL, and Ross D: Subcellular localization of NAD(P)H:quinone oxidoreductase 1 in human cancer cells. Cancer Res 62, 1420–1424, 2002.
  • Seow HA, Penketh PG, Belcourt MF, Tomasz M, Rockwell S, et al.: Nuclear overexpression of NAD(P)H:quinone oxidoreductase 1 in Chinese hamster ovary cells increases the cytotoxicity of mitomycin C under aerobic and hypoxic conditions. J Biol Chem 279, 31606–31612, 2004.
  • Fisher S, Loncar J, Zaja R, Schnell S, Schirmer K, et al.: Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchusmykiss). Aquat Toxicol 101, 438–446, 2011.
  • Perez MJ, Gonzalez-Sanchez E, Gonzalez-Loyola A, Gonzalez-Buitrago JM, and Marin JJ: Mitochondrial genome depletion dysregulates bile acid- and paracetamol-induced expression of the transporters Mdr1, Mrp1 and Mrp4 in liver cells. Br J Pharmacol 162, 1686–1699, 2011.
  • Siegel D, Anwar A, Winski SL, Kepa JK, Zolman KL, et al.: Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinoneoxidoreductase 1. Mol Pharmacol 59, 263–268, 2001.
  • Rajagopal A and Simon SM: Subcellular localization and activity of multidrug resistance proteins. Mol Biol Cell 14, 3389–3399, 2003.
  • Li Z, Zhang Y, Jin T, Men J, Lin Z, et al.: NQO1 protein expression predicts poor prognosis of non-small cell lung cancers. BMC Cancer 15, 207, 2015.
  • Cui X, Li L, Yan G, Meng K, Lin Z, et al.: High expression of NQO1 is associated with poor prognosis in serous ovarian carcinoma. BMC Cancer 15, 244, 2015.
  • Siegel D, Yan C, and Ross D: NAD(P)H:quinoneoxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem Pharmacol 83, 1033–1040, 2012.
  • Li LS, Bey EA, Dong Y, Meng J, Patra B, et al.: Modulating endogenous NQO1 levels identifies key regulatory mechanisms of action of β-lapachone for pancreatic cancer therapy. Clin Cancer Res 17, 275–285, 2011.
  • Dinkova-Kostova AT and Talalay P: NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 501, 116–123, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.