634
Views
39
CrossRef citations to date
0
Altmetric
Review Articles

Curcumin Nanotechnologies and Its Anticancer Activity

, &
Pages 381-393 | Received 31 Jan 2016, Accepted 17 Jan 2017, Published online: 22 Feb 2017

References

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, et al.: Global cancer statistics, 2012. CA Cancer J Clin 65, 87–108, 2015.
  • Islami F, Torre LA, Jemal A: Global trends of lung cancer mortality and smoking prevalence. Transl Lung Cancer Res 4, 327–338, 2015.
  • Nair KS, Raj S, Tiwari VK, Piang LK: Cost of treatment for cancer: experiences of patients in public hospitals in India. Asian Pac J Cancer Prev 14, 5049–5054, 2013.
  • Schnipper LE, Davidson NE, Wollins DS, Tyne C, Blayney DW, et al.: American society of clinical oncology statement: a conceptual framework to assess the value of cancer treatment options. J Clin Oncol 33, 2563–2577, 2015.
  • Gillet JP, Gottesman MM: Mechanisms of multidrug resistance in cancer. Methods Mol Biol 596, 47–76, 2010.
  • Cojoc M, Mabert K, Muders MH, Dubrovska A: A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol 31, 16–27, 2015.
  • Rosa GM, Gigli L, Tagliasacchi MI, Di Iorio C, Carbone F, et al.: Update on cardiotoxicity of anti-cancer treatments. Eur J Clin Invest 46, 264–284, 2016.
  • Vassilakopoulou M, Boostandoost E, Papaxoinis G, de La Motte Rouge T, Khayat D, et al.: Anticancer treatment and fertility: Effect of therapeutic modalities on reproductive system and functions. Crit Rev Oncol Hematol 97, 328–334, 2016.
  • Mirabile A, Numico G, Russi EG, Bossi P, Crippa F, et al.: Sepsis in head and neck cancer patients treated with chemotherapy and radiation: Literature review and consensus. Crit Rev Oncol Hematol 95, 191–213, 2015.
  • Liu L, Ye Q, Lu M, Lo YC, Hsu YH, et al.: A new approach to reduce toxicities and to improve bioavailabilities of platinum-containing anti-cancer nanodrugs. Sci Rep 5, 10881, 2015.
  • Cai L, Xu G, Shi C, Guo D, Wang X, et al.: Telodendrimer nanocarrier for co-delivery of paclitaxel and cisplatin: a synergistic combination nanotherapy for ovarian cancer treatment. Biomaterials 37, 456–468, 2015.
  • England CG, Miller MC, Kuttan A, Trent JO, Frieboes HB: Release kinetics of paclitaxel and cisplatin from two and three layered gold nanoparticles. Eur J Pharm Biopharm 92, 120–129, 2015.
  • Gupta SC, Sung B, Kim JH, Prasad S, Li S, et al.: Multitargeting by turmeric, the golden spice: from kitchen to clinic. Mol Nutr Food Res 57, 1510–1528, 2013.
  • Mileo AM, Miccadei S: Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxid Med Cell Longev 2016, 6475624, 2016.
  • Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, et al.: In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci 16, 9236–9282, 2015.
  • Fridlender M, Kapulnik Y, Koltai H: Plant derived substances with anti-cancer activity: from folklore to practice. Front Plant Sci 6, 799, 2015.
  • Pan MH, Huang TM, Lin JK: Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27, 486–494, 1999.
  • Ravindranath V, Chandrasekhara N: Metabolism of curcumin – studies with [3H]curcumin. Toxicology 22, 337–344, 1981.
  • Torchilin VP: Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13, 813–827, 2014.
  • Prasad S, Tyagi AK, Aggarwal BB: Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46, 2–18, 2014.
  • Patra S, Roy E, Karfa P, Kumar S, Madhuri R, et al.: Dual-responsive polymer coated superparamagnetic nanoparticle for targeted drug delivery and hyperthermia treatment. ACS Appl Mater Interfaces 7, 9235–9246, 2015.
  • Hu L, Kong D, Hu Q, Gao N, Pang S: Evaluation of high-performance curcumin nanocrystals for pulmonary drug delivery both in vitro and in vivo. Nanoscale Res Lett 10, 381, 2015.
  • Subramani PA, Narala VR: Challenges of curcumin bioavailability: novel aerosol remedies. Nat Prod Commun 8, 121–124, 2013.
  • Schraufstatter E, Bernt H: Antibacterial action of curcumin and related compounds. Nature 164, 456, 1949.
  • Priyadarsini K: The chemistry of curcumin: from extraction to therapeutic agent. Molecules 19, 20091, 2014.
  • Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F: Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2, 8–21, 2006.
  • Taki M, Tagami T, Fukushige K, Ozeki T: Fabrication of nanocomposite particles using a two-solution mixing-type spray nozzle for use in an inhaled curcumin formulation. Int J Pharm 511, 104–110, 2016.
  • Pandita D, Kumar S, Lather V: Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospectives. Drug Discov Today 20, 95–104, 2015.
  • Yallapu MM, Gupta BK, Jaggi M, Chauhan SC: Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J Colloid Interface Sci 351, 19–29, 2010.
  • Yallapu MM, Khan S, Maher DM, Ebeling MC, Sundram V, et al.: Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 35, 8635–8648, 2014.
  • Waghela BN, Sharma A, Dhumale S, Pandey SM, Pathak C: Curcumin conjugated with PLGA potentiates sustainability, anti-proliferative activity and apoptosis in human colon carcinoma cells. PLoS ONE 10, e0117526, 2015.
  • Masloub SM, Elmalahy MH, Sabry D, Mohamed WS, Ahmed SH: Comparative evaluation of PLGA nanoparticle delivery system for 5-fluorouracil and curcumin on squamous cell carcinoma. Arch Oral Biol 64, 1–10, 2015.
  • Das RK, Kasoju N, Bora U: Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed Nanotechnol Biol Med 6, 153–160, 2010.
  • Sanoj Rejinold N, Muthunarayanan M, Divyarani VV, Sreerekha PR, Chennazhi KP, et al.: Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. J Colloid Interface Sci 360, 39–51, 2011.
  • Zhou N, Zan X, Wang Z, Wu H, Yin D, et al.: Galactosylated chitosan–polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr Polym 94, 420–429, 2013.
  • Anitha A, Deepa N, Chennazhi KP, Lakshmanan V-K, Jayakumar R: Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta (BBA) – Gen Subj 1840, 2730–2743, 2014.
  • Chuah LH, Roberts CJ, Billa N, Abdullah S, Rosli R: Cellular uptake and anticancer effects of mucoadhesive curcumin-containing chitosan nanoparticles. Colloids Surf B 116, 228–236, 2014.
  • Delmar K, Bianco-Peled H: Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydr Polym 136, 570–580, 2016.
  • Loch-Neckel G, Santos-Bubniak L, Mazzarino L, Jacques AV, Moccelin B, et al.: Orally administered chitosan-coated polycaprolactone nanoparticles containing curcumin attenuate metastatic melanoma in the lungs. J Pharm Sci 104, 3524–3534, 2015.
  • Palange AL, Di Mascolo D, Carallo C, Gnasso A, Decuzzi P: Lipid–polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells. Nanomed Nanotechnol Biol Med 10, 991–1002, 2014.
  • Kumar SSD, Mahesh A, Mahadevan S, Mandal AB: Synthesis and characterization of curcumin loaded polymer/lipid based nanoparticles and evaluation of their antitumor effects on MCF-7 cells. Biochim Biophys Acta (BBA) – Gen Subj 1840, 1913–1922, 2014.
  • Pillai JJ, Thulasidasan AK, Anto RJ, Chithralekha DN, Narayanan A, et al.: Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells. J Nanobiotechnol 12, 25, 2014.
  • Teong B, Lin CY, Chang SJ, Niu GC, Yao CH, et al.: Enhanced anti-cancer activity by curcumin-loaded hydrogel nanoparticle derived aggregates on A549 lung adenocarcinoma cells. J Mater Sci Mater Med 26, 5357, 2015.
  • Ryan RO: Nanobiotechnology applications of reconstituted high density lipoprotein. J Nanobiotechnol 8, 28, 2010.
  • Oda MN, Hargreaves PL, Beckstead JA, Redmond KA, Van Antwerpen R, et al.: Reconstituted high density lipoprotein enriched with the polyene antibiotic amphotericin B. J Lipid Res 47, 260–267, 2006.
  • Redmond KA, Nguyen TS, Ryan RO: All-trans-retinoic acid nanodisks. Int J Pharm 339, 246–250, 2007.
  • Ghosh M, Singh AT, Xu W, Sulchek T, Gordon LI, et al.: Curcumin nanodisks: formulation and characterization. Nanomedicine 7, 162–167, 2011.
  • Bertoni F, Ponzoni M: The cellular origin of mantle cell lymphoma. Int J Biochem Cell Biol 39, 1747–1753, 2007.
  • Singh AT, Ghosh M, Forte TM, Ryan RO, Gordon LI: Curcumin nanodisk-induced apoptosis in mantle cell lymphoma. Leuk Lymphoma 52, 1537–1543, 2011.
  • Lima FR, Kahn SA, Soletti RC, Biasoli D, Alves T, et al.: Glioblastoma: therapeutic challenges, what lies ahead. Biochim Biophys Acta 1826, 338–349, 2012.
  • Ghosh M, Ryan RO: ApoE enhances nanodisk-mediated curcumin delivery to glioblastoma multiforme cells. Nanomedicine (Lond) 9, 763–771, 2014.
  • Crosby NM, Ghosh M, Su B, Beckstead JA, Kamei A, et al.: Anti-CD20 single chain variable antibody fragment-apolipoprotein A-I chimera containing nanodisks promote targeted bioactive agent delivery to CD20-positive lymphomas. Biochem Cell Biol 93, 343–350, 2015.
  • Kunwar A, Barik A, Pandey R, Priyadarsini KI: Transport of liposomal and albumin loaded curcumin to living cells: An absorption and fluorescence spectroscopic study. Biochim Biophys Acta (BBA) – Gen Subj 1760, 1513–1520, 2006.
  • Takahashi M, Uechi S, Takara K, Asikin Y, Wada K: Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem 57, 9141–9146, 2009.
  • Jin HH, Lu Q, Jiang JG: Curcumin liposomes prepared with milk fat globule membrane phospholipids and soybean lecithin. J Dairy Sci 99, 1780–1790, 2016.
  • Lin Y-L, Liu Y-K, Tsai N-M, Hsieh J-H, Chen C-H, et al.: A Lipo-PEG-PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomed Nanotechnol Biol Med 8, 318–327, 2012.
  • Orr WS, Denbo JW, Saab KR, Myers AL, Ng CY, et al.: Liposome-encapsulated curcumin suppresses neuroblastoma growth through nuclear factor-kappa B inhibition. Surgery 151, 736–744, 2012.
  • Li L, Braiteh FS, Kurzrock R: Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104, 1322–1331, 2005.
  • Wang D, Veena MS, Stevenson K, Tang C, Ho B, et al.: Liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor kappaB by an AKT-independent pathway. Clin Cancer Res 14, 6228–6236, 2008.
  • Chen C, Johnston TD, Jeon H, Gedaly R, McHugh PP, et al.: An in vitro study of liposomal curcumin: Stability, toxicity and biological activity in human lymphocytes and Epstein-Barr virus-transformed human B-cells. Int J Pharm 366, 133–139, 2009.
  • Moku G, Gulla SK, Nimmu NV, Khalid S, Chaudhuri A: Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes. Biomater Sci 4, 627–638, 2016.
  • Barui S, Saha S, Yakati V, Chaudhuri A: Systemic codelivery of a homoserine derived ceramide analogue and curcumin to tumor vasculature inhibits mouse tumor growth. Mol Pharm 13, 404–419, 2016.
  • McMenamin ME, Soung P, Perera S, Kaplan I, Loda M, et al.: Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res 59, 4291–4296, 1999.
  • Narayanan NK, Nargi D, Randolph C, Narayanan BA: Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer 125, 1–8, 2009.
  • Uchegbu IF, Vyas SP: Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172, 33–70, 1998.
  • Kumar GP, Rajeshwarrao P: Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B 1, 208–219, 2011.
  • Mandal S, Banerjee C, Ghosh S, Kuchlyan J, Sarkar N: Modulation of the photophysical properties of curcumin in nonionic surfactant (Tween-20) forming micelles and niosomes: a comparative study of different microenvironments. J Phys Chem B 117, 6957–6968, 2013.
  • Rungphanichkul N, Nimmannit U, Muangsiri W, Rojsitthisak P: Preparation of curcuminoid niosomes for enhancement of skin permeation. Int J Pharm Sci 66, 570–575, 2011.
  • Tavano L, Muzzalupo R, Picci N, de Cindio B: Co-encapsulation of antioxidants into niosomal carriers: gastrointestinal release studies for nutraceutical applications. Colloids Surf B 114, 82–88, 2014.
  • Wang P, Zhang L, Peng H, Li Y, Xiong J, et al.: The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater Sci Eng C 33, 4802–4808, 2013.
  • Wang J, Zhu R, Sun D, Sun X, Geng Z, et al.: Intracellular uptake of curcumin-loaded solid lipid nanoparticles exhibit anti-inflammatory activities superior to those of curcumin through the NF-kappaB signaling pathway. J Biomed Nanotechnol 11, 403–415, 2015.
  • Sasaki H, Sunagawa Y, Takahashi K, Imaizumi A, Fukuda H, et al.: Innovative preparation of curcumin for improved oral bioavailability. Biol Pharm Bull 34, 660–665, 2011.
  • Milano F, Mari L, van de Luijtgaarden W, Parikh K, Calpe S, et al.: Nano-curcumin inhibits proliferation of esophageal adenocarcinoma cells and enhances the T cell mediated immune response. Front Oncol 3, 137, 2013.
  • Kanai M, Imaizumi A, Otsuka Y, Sasaki H, Hashiguchi M, et al.: Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol 69, 65–70, 2012.
  • Kanai M, Otsuka Y, Otsuka K, Sato M, Nishimura T, et al.: A phase I study investigating the safety and pharmacokinetics of highly bioavailable curcumin (Theracurmin) in cancer patients. Cancer Chemother Pharmacol 71, 1521–1530, 2013.
  • Morimoto T, Sunagawa Y, Katanasaka Y, Hirano S, Namiki M, et al.: Drinkable preparation of Theracurmin exhibits high absorption efficiency—a single-dose, double-blind, 4-way crossover study. Biol Pharm Bull 36, 1708–1714, 2013.
  • Kang M, Ho JN, Kook HR, Lee S, Oh JJ, et al.: Theracurmin(R) efficiently inhibits the growth of human prostate and bladder cancer cells via induction of apoptotic cell death and cell cycle arrest. Oncol Rep 35, 1463–1472, 2015.
  • Thakral S, Thakral NK, Majumdar DK: Eudragit: a technology evaluation. Expert Opin Drug Deliv 10, 131–149, 2013.
  • Dandekar P, Dhumal R, Jain R, Tiwari D, Vanage G, et al.: Toxicological evaluation of pH-sensitive nanoparticles of curcumin: acute, sub-acute and genotoxicity studies. Food Chem Toxicol 48, 2073–2089, 2010.
  • Prajakta D, Ratnesh J, Chandan K, Suresh S, Grace S, et al.: Curcumin loaded pH-sensitive nanoparticles for the treatment of colon cancer. J Biomed Nanotechnol 5, 445–455, 2009.
  • Kumar S, Kesharwani SS, Mathur H, Tyagi M, Bhat GJ, et al.: Molecular complexation of curcumin with pH sensitive cationic copolymer enhances the aqueous solubility, stability and bioavailability of curcumin. Eur J Pharm Sci 82, 86–96, 2016.
  • Li J, Lee IW, Shin GH, Chen X, Park HJ: Curcumin-Eudragit(R) E PO solid dispersion: a simple and potent method to solve the problems of curcumin. Eur J Pharm Biopharm 94, 322–332, 2015.
  • Madhavi M, Madhavi K, Jithan AV: Preparation and in vitro/in vivo characterization of curcumin microspheres intended to treat colon cancer. J Pharm Bioallied Sci 4, 164–171, 2012.
  • Szejtli J: Cyclodextrin Technology. Springer, 1988.
  • Vassiliou A: Authorising the Placing on the Market of Alpha-Cyclodextrin as a Novel Food Ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council. Brussels: Official Journal of the European Union, 2008.
  • Yallapu MM, Jaggi M, Chauhan SC: β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B 79, 113–125, 2010.
  • Yallapu MM, Dobberpuhl MR, Maher DM, Jaggi M, Chauhan SC: Design of curcumin loaded cellulose nanoparticles for prostate cancer. Curr Drug Metab 13, 120–128, 2012.
  • Tan Q, Li Y, Wu J, Mei H, Zhao C, et al.: An optimized molecular inclusion complex of diferuloylmethane: enhanced physical properties and biological activity. Int J Nanomed 5, 5385–5393, 2012.
  • Yadav VR, Prasad S, Kannappan R, Ravindran J, Chaturvedi MM, et al.: Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem Pharmacol 80, 1021–1032, 2010.
  • Yadav VR, Suresh S, Devi K, Yadav S: Effect of cyclodextrin complexation of curcumin on its solubility and antiangiogenic and anti-inflammatory activity in rat colitis model. AAPS PharmSciTech 10, 752–762, 2009.
  • Kazemi-Lomedasht F, Rami A, Zarghami N: Comparison of inhibitory effect of curcumin nanoparticles and free curcumin in human telomerase reverse transcriptase gene expression in breast cancer. Adv Pharm Bull 3, 127–130, 2013.
  • Rocks N, Bekaert S, Coia I, Paulissen G, Gueders M, et al.: Curcumin-cyclodextrin complexes potentiate gemcitabine effects in an orthotopic mouse model of lung cancer. Br J Cancer 107, 1083–1092, 2012.
  • Rachmawati H, Edityaningrum CA, Mauludin R: Molecular inclusion complex of curcumin-beta-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech 14, 1303–1312, 2013.
  • Ndong Ntoutoume GM, Granet R, Mbakidi JP, Bregier F, Leger DY, et al.: Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Bioorg Med Chem Lett 26, 941–945, 2016.
  • Swaminathan S, Cavalli R, Trotta F: Cyclodextrin-based nanosponges: a versatile platform for cancer nanotherapeutics development. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8, 579–601, 2016.
  • Bansal SS, Goel M, Aqil F, Vadhanam MV, Gupta RC: Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prev Res (Phila) 4, 1158–1171, 2011.
  • Kasinathan N, Amirthalingam M, Reddy ND, Jagani HV, Volety SM, et al.: In-situ implant containing PCL-curcumin nanoparticles developed using design of experiments. Drug Deliv 1–9, 2014.
  • Sridhar R, Ravanan S, Venugopal JR, Sundarrajan S, Pliszka D, et al.: Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: in vitro efficacy evaluation. J Biomater Sci Polym Ed 25, 985–998, 2014.
  • Bansal SS, Kausar H, Vadhanam MV, Ravoori S, Pan J, et al.: Curcumin implants, not curcumin diet, inhibit estrogen-induced mammary carcinogenesis in ACI rats. Cancer Prev Res (Phila) 7, 456–465, 2014.
  • Aqil F, Jeyabalan J, Kausar H, Bansal SS, Sharma RJ, et al.: Multi-layer polymeric implants for sustained release of chemopreventives. Cancer Lett 326, 33–40, 2012.
  • Varaprasad K, Mohan YM, Vimala K, Mohana Raju K: Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J Appl Polym Sci 121, 784–796, 2011.
  • Manju S, Sreenivasan K: Gold nanoparticles generated and stabilized by water soluble curcumin–polymer conjugate: blood compatibility evaluation and targeted drug delivery onto cancer cells. J Colloid Interface Sci 368, 144–151, 2012.
  • Siddiqui MA, Ahamed M, Ahmad J, Majeed Khan MA, Musarrat J, et al.: Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem Toxicol 50, 641–647, 2012.
  • Yallapu MM, Othman SF, Curtis ET, Gupta BK, Jaggi M, et al.: Multi-functional magnetic nanoparticles for magnetic resonance imaging and cancer therapy. Biomaterials 32, 1890–1905, 2011.
  • Ito A, Shinkai M, Honda H, Kobayashi T: Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100, 1–11, 2005.
  • Lu AH, Salabas EL, Schuth F: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46, 1222–1244, 2007.
  • Yallapu MM, Othman SF, Curtis ET, Bauer NA, Chauhan N, et al.: Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomed 7, 1761–1779, 2012.
  • Yallapu MM, Ebeling MC, Khan S, Sundram V, Chauhan N, et al.: Novel curcumin-loaded magnetic nanoparticles for pancreatic cancer treatment. Mol Cancer Ther 12, 1471–1480, 2013.
  • Balasubramanian S, Girija AR, Nagaoka Y, Iwai S, Suzuki M, et al.: Curcumin and 5-fluorouracil-loaded, folate- and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. Int J Nanomed 9, 437–459, 2014.
  • Fang JH, Chiu TL, Huang WC, Lai YH, Hu SH, et al.: Dual-targeting lactoferrin-conjugated polymerized magnetic polydiacetylene-assembled nanocarriers with self-responsive fluorescence/magnetic resonance imaging for in vivo brain tumor therapy. Adv Healthc Mater 5, 688–695, 2016.
  • Selvam P, El-Sherbiny IM, Smyth HD: Swellable hydrogel particles for controlled release pulmonary administration using propellant-driven metered dose inhalers. J Aerosol Med Pulm Drug Deliv 24, 25–34, 2011.
  • El-Sherbiny IM, Smyth HD: Controlled release pulmonary administration of curcumin using swellable biocompatible microparticles. Mol Pharm 9, 269–280, 2012.
  • McClure R, Yanagisawa D, Stec D, Abdollahian D, Koktysh D, et al.: Inhalable curcumin: offering the potential for translation to imaging and treatment of Alzheimer's disease. J Alzheimers Dis 44, 283–295, 2015.
  • Lin Y-L, Liu Y-K, Tsai N-M, Hsieh J-H, Chen C-H, et al.: A Lipo-PEG–PEI complex for encapsulating curcumin that enhances its antitumor effects on curcumin-sensitive and curcumin-resistance cells. Nanomed Nanotechnol Biol Med 8, 318–327.
  • Dhule SS, Penfornis P, Frazier T, Walker R, Feldman J, et al.: Curcumin-loaded γ-cyclodextrin liposomal nanoparticles as delivery vehicles for osteosarcoma. Nanomed Nanotechnol Biol Med 8, 440–451, 2012.
  • Wang D, Veena MS, Stevenson K, Tang C, Ho B, et al.: liposome-encapsulated curcumin suppresses growth of head and neck squamous cell carcinoma in vitro and in xenografts through the inhibition of nuclear factor κB by an AKT-independent pathway. Am Assoc Cancer Res 14, 6228–6236, 2008.
  • Li C, Zhang Y, Su T, Feng L, Long Y, et al.: Silica-coated flexible liposomes as a nanohybrid delivery system for enhanced oral bioavailability of curcumin. Int J Nanomed 7, 5995–6002, 2012.
  • Liu L, Sun L, Wu Q, Guo W, Li L, et al.: Curcumin loaded polymeric micelles inhibit breast tumor growth and spontaneous pulmonary metastasis. Int J Pharm 443, 175–182, 2013.
  • Gou M, Men K, Shi H, Xiang M, Zhang J, et al.: Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale 3, 1558–1567, 2011.
  • Gong C, Deng S, Wu Q, Xiang M, Wei X, et al.: Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials 34, 1413–1432, 2013.
  • Lee WH, Loo CY, Ong HX, Traini D, Young PM, et al.: Synthesis and characterization of inhalable flavonoid nanoparticle for lung cancer cell targeting. J Biomed Nanotechnol 12, 371–386, 2016.
  • Zhang L, Zhu W, Yang C, Guo H, Yu A, et al.: A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int J Nanomed 7, 151–162, 2012.
  • Gota VS, Maru GB, Soni TG, Gandhi TR, Kochar N, et al.: Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. J Agric Food Chem 58, 2095–2099, 2010.
  • Duan J, Zhang Y, Han S, Chen Y, Li B, et al.: Synthesis and in vitro/in vivo anti-cancer evaluation of curcumin-loaded chitosan/poly(butyl cyanoacrylate) nanoparticles. Int J Pharm 400, 211–220, 2010.
  • Chiu SS, Lui E, Majeed M, Vishwanatha JK, Ranjan AP, et al.: Differential distribution of intravenous curcumin formulations in the rat brain. Anticancer Res 31, 907–911, 2011.
  • Bisht S, Mizuma M, Feldmann G, Ottenhof NA, Hong SM, et al.: Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer. Mol Cancer Ther 9, 2255–2264, 2010.
  • Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MAH, Najafi F, et al.: Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol 12, 226–234, 2012.
  • Zaman MS, Chauhan N, Yallapu MM, Gara RK, Maher DM, et al.: Curcumin nanoformulation for cervical cancer treatment. Sci Rep 6, 20051, 2016.
  • Anand P, Nair HB, Sung B, Kunnumakkara AB, Yadav VR, et al.: Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem Pharmacol 79, 330–338, 2010.
  • Hu B, Sun D, Sun C, Sun Y-F, Sun H-X, et al.: A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma. Biochem Biophys Res Commun 468, 525–532, 2015.
  • Wanninger S, Lorenz V, Subhan A, Edelmann FT: Metal complexes of curcumin – synthetic strategies, structures and medicinal applications. Chem Soc Rev 44, 4986–5002, 2015.
  • Tang H, Murphy CJ, Zhang B, Shen Y, Van Kirk EA, et al.: Curcumin polymers as anticancer conjugates. Biomaterials 31, 7139–7149, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.