267
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Creatine Supplementation and Doxorubicin-Induced Skeletal Muscle Dysfunction: An Ex Vivo Investigation

&
Pages 607-615 | Received 06 Jul 2016, Accepted 13 Jan 2017, Published online: 21 Mar 2017

References

  • Fairclough DL, Fetting JH, Cella D, Wonson W, and Moinpour CM: Quality of life and quality adjusted survival for breast cancer patients receiving adjuvant therapy. Eastern Cooperative Oncology Group (ECOG). Qual Life Res 8, 723–731, 1999.
  • Liu J, Tu D, Dancey J, Reyno L, Pritchard KI, et al.: Quality of life analyses in a clinical trial of DPPE (tesmilifene) plus doxorubicin versus doxorubicin in patients with advanced or metastatic breast cancer: NCIC CTG Trial MA.19. Breast Cancer Res Treat 100, 263–271, 2006.
  • Abramson JJ, Buck E, Salama G, Casida JE, and Pessah IN: Mechanism of anthraquinone-induced calcium release from skeletal muscle sarcoplasmic reticulum. J Biol Chem 263, 18750–18758, 1988.
  • De Beer EL, Finkle H, Voest EE, Van Heijst BG, and Schiereck P: Doxorubicin interacts directly with skinned single skeletal muscle fibres. Eur J Pharmacol 214, 97–100, 1992.
  • Ertunc M, Sara Y, Korkusuz P, and Onur R: Differential contractile impairment of fast- and slow-twitch skeletal muscles in a rat model of doxorubicin-induced congestive heart failure. Pharmacology 84, 240–248, 2009.
  • Hayward R, Hydock D, Gibson N, Greufe S, Bredahl E, et al.: Tissue retention of doxorubicin and its effects on cardiac, smooth, and skeletal muscle function. J Physiol Biochem 69, 177–187, 2012.
  • Hydock DS, Lien CY, Jensen BT, Schneider CM, and Hayward R: Characterization of the effect of in vivo doxorubicin treatment on skeletal muscle function in the rat. Anticancer Res 31, 2023–2028, 2011.
  • Smuder AJ, Kavazis AN, Min K, and Powers SK: Exercise protects against doxorubicin-induced markers of autophagy signaling in skeletal muscle. J Appl Physiol 111, 1190–1198, 2011.
  • Smuder AJ, Kavazis AN, Min K, and Powers SK: Exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle. J Appl Physiol 110, 935–942.
  • Stathopoulos GP, Papadopoulos NG, Stephanopoulou A, Dontas I, Kotsarelis D, et al.: An increase of serum lipids after cumulative doses of doxorubicin and epirubicin in experimental animals. Anticancer Res 16, 3429–3433, 1996.
  • van Norren K, van Helvoort A, Argiles JM, van Tuijl S, Arts K, et al.: Direct effects of doxorubicin on skeletal muscle contribute to fatigue. Br J Cancer 100, 311–314, 2009.
  • Zorzato F, Salviati G, Facchinetti T, and Volpe P: Doxorubicin induces calcium release from terminal cisternae of skeletal muscle. A study on isolated sarcoplasmic reticulum and chemically skinned fibers. J Biol Chem 260, 7349–7355, 1985.
  • Gilliam LA and St Clair DK: Chemotherapy-induced weakness and fatigue in skeletal muscle: the role of oxidative stress. Antioxidants Redox Signal 15, 2543–2563, 2011.
  • Fabris S and MacLean DA: Skeletal muscle an active compartment in the sequestering and metabolism of doxorubicin chemotherapy. PloS One 10, e0139070, 2015.
  • Hayward R, Hydock D, Gibson N, Greufe S, Bredahl E, et al.: Tissue retention of doxorubicin and its effects on cardiac, smooth, and skeletal muscle function. J Physiol Biochem 69, 177–187, 2013.
  • Ge M, Fang YY, Liu GP, and Guan SD: Effect of Shengmai injection () on diaphragmatic contractility in doxorubicin-treated rats. Chin J Integr Med 20, 43–48, 2014.
  • Smuder AJ, Kavazis AN, Min K, and Powers SK: Exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle. J Appl Physiol 110, 935–942, 2011.
  • Puri PL, Medaglia S, Cimino L, Maselli C, Germani A, et al.: Uncoupling of p21 induction and MyoD activation results in the failure of irreversible cell cycle arrest in doxorubicin-treated myocytes. J Cellular Biochem 66, 27–36, 1997.
  • Gilliam LA, Fisher-Wellman KH, Lin CT, Maples JM, Cathey BL, et al.: The anticancer agent doxorubicin disrupts mitochondrial energy metabolism and redox balance in skeletal muscle. Free Rad Biol Med 65, 988–996, 2013.
  • Gouspillou G, Scheede-Bergdahl C, Spendiff S, Vuda M, Meehan B, et al.: Anthracycline-containing chemotherapy causes long-term impairment of mitochondrial respiration and increased reactive oxygen species release in skeletal muscle. Sci Rep 5, 8717, 2015.
  • Celik T, Iyisoy A, Celik M, Yuksel UC, and Isik E: Muscle wastage in heart failure: orphan of the heart failure. Int J Cardiol 135, 233–236, 2009.
  • Harrington D, Anker SD, Chua TP, Webb-Peploe KM, Ponikowski PP, et al.: Skeletal muscle function and its relation to exercise tolerance in chronic heart failure. J Am College Cardiol 30, 1758–1764, 1997.
  • van Hees HW, van der Heijden HF, Ottenheijm CA, Heunks LM, Pigmans CJ, et al.: Diaphragm single-fiber weakness and loss of myosin in congestive heart failure rats. Am J Physiol Heart Circul Physiol 293, H819–H828, 2007.
  • Greene D, Nail LM, Fieler VK, Dudgeon D, and Jones LS: A comparison of patient-reported side effects among three chemotherapy regimens for breast cancer. Cancer Pract 2, 57–62, 1994.
  • Hayward R, Lien CY, Jensen BT, Hydock DS, and Schneider CM: Exercise training mitigates anthracycline-induced chronic cardiotoxicity in a juvenile rat model. Pediatr Blood Cancer 59, 149–154, 2012.
  • Hydock DS, Lien CY, Jensen BT, Parry TL, Schneider CM, et al.: Rehabilitative exercise in a rat model of doxorubicin cardiotoxicity. Exp Biol Med 237, 1483–1492, 2012.
  • Hydock DS, Lien CY, Jensen BT, Schneider CM, and Hayward R: Exercise preconditioning provides long-term protection against early chronic doxorubicin cardiotoxicity. Integr Cancer Ther 10, 47–57, 2011.
  • Hydock DS, Lien CY, Schneider CM, and Hayward R: Exercise preconditioning protects against doxorubicin-induced cardiac dysfunction. Med Sci Sports Exer 40, 808–817, 2008.
  • Jensen BT, Lien CY, Hydock DS, Schneider CM, and Hayward R: Exercise mitigates cardiac doxorubicin accumulation and preserves function in the rat. J Cardiovasc Pharmacol 62, 263–269, 2013.
  • Barnabe N, Zastre JA, Venkataram S, and Hasinoff BB: Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Rad Biol Med 33, 266–275, 2002.
  • Deng S, Yan T, Jendrny C, Nemecek A, Vincetic M, et al.: Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both topoisomerase II isoforms. BMC Cancer 14, 842, 2014.
  • Chlopcikova S, Psotova J, Miketova P, Sousek J, Lichnovsky V, et al.: Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part II. caffeic, chlorogenic and rosmarinic acids. Phytother Res 18, 408–413, 2004.
  • Codenotti S, Battistelli M, Burattini S, Salucci S, Falcieri E, et al.: Melatonin decreases cell proliferation, impairs myogenic differentiation and triggers apoptotic cell death in rhabdomyosarcoma cell lines. Oncol Rep 34, 279–287, 2015.
  • Zhang C, Feng Y, Qu S, Wei X, Zhu H, et al.: Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res 90, 538–545, 2011.
  • Kavazis AN, Smuder AJ, and Powers SK: Effects of short-term endurance exercise training on acute doxorubicin-induced FoxO transcription in cardiac and skeletal muscle. J Appl Physiol 117, 223–230, 2014.
  • Bredahl EC, Pfannenstiel KB, Quinn CJ, Hayward R, and Hydock DS: Effects of exercise on doxorubicin-induced skeletal muscle dysfunction. Med Sci Sports Exer 48, 1468–1473, 2016.
  • Blanchard CM, Courneya KS, Stein K, and American Cancer Society's SCS, II: Cancer survivors' adherence to lifestyle behavior recommendations and associations with health-related quality of life: results from the American Cancer Society's SCS-II. J Clin Oncol 26, 2198–2204, 2008.
  • Iyer NS, Osann K, Hsieh S, Tucker JA, Monk BJ, et al.: Health behaviors in cervical cancer survivors and associations with quality of life. Clin Ther 38, 467–475, 2016.
  • Moura IM, Santos FF, Moura JA, Curi R, and Fernandes LC: Creatine supplementation induces alteration in cross-sectional area in skeletal muscle fibers of wistar rats under swimming training. J Sports Sci Med 1, 87–95, 2002.
  • Prevost MC, Nelson AG, and Morris GS: Creatine supplementation enhances intermittent work performance. Res Quart Exer Sport 68, 233–240, 1997.
  • Volek JS, Duncan ND, Mazzetti SA, Staron RS, Putukian M, et al.: Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exer 31, 1147–1156, 1999.
  • Persky AM and Brazeau GA: Clinical pharmacology of the dietary supplement creatine monohydrate. Pharmacol Rev 53, 161–176, 2001.
  • Lawler JM, Barnes WS, Wu G, Song W, and Demaree S: Direct antioxidant properties of creatine. Biochem Biophys Res Commun 290, 47–52, 2002.
  • Rahimi R: Creatine supplementation decreases oxidative DNA damage and lipid peroxidation induced by a single bout of resistance exercise. J Strength Condition Res/Natl Strength Condition Assoc 25, 3448–3455, 2011.
  • Fimognari C, Sestili P, Lenzi M, Cantelli-Forti G, and Hrelia P: Protective effect of creatine against RNA damage. Mutat Res 670, 59–67, 2009.
  • Qasim N and Mahmood R: Diminution of oxidative damage to human erythrocytes and lymphocytes by creatine: Possible role of creatine in blood. PloS One 10, e0141975, 2015.
  • Felber S, Skladal D, Wyss M, Kremser C, Koller A, et al.: Oral creatine supplementation in Duchenne muscular dystrophy: a clinical and 31P magnetic resonance spectroscopy study. Neurol Res 22, 145–150, 2000.
  • Derave W, Van Den Bosch L, Lemmens G, Eijnde BO, Robberecht W, et al.: Skeletal muscle properties in a transgenic mouse model for amyotrophic lateral sclerosis: effects of creatine treatment. Neurobiol Dis 13, 264–272, 2003.
  • Matthews RT, Yang L, Jenkins BG, Ferrante RJ, Rosen BR, et al.: Neuroprotective effects of creatine and cyclocreatine in animal models of Huntington's disease. J Neurosci 18, 156–163, 1998.
  • Head SI, Greenaway B, and Chan S: Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength. PloS One 6, e22742, 2011.
  • Balestrino M, Lensman M, Parodi M, Perasso L, Rebaudo R, et al.: Role of creatine and phosphocreatine in neuronal protection from anoxic and ischemic damage. Amino Acids 23, 221–229, 2002.
  • Baurain R, Deprez-De Campeneere D, Zenebergh A, and Trouet A: Plasma levels of doxorubicin after IV bolus injection and infusion of the doxorubicin-DNA complex in rabbits and man. Comparison with free doxorubicin. Cancer Chemother Pharmacol 9, 93–96, 1982.
  • Chicco AJ, Schneider CM, and Hayward R: Voluntary exercise protects against acute doxorubicin cardiotoxicity in the isolated perfused rat heart. Am J Physiol Regul Integr Comp Physiol 289, R424–R431, 2005.
  • Siegel RL, Miller KD, and Jemal A: Cancer statistics, 2016. CA: Cancer J Clin 66, 7–30, 2016.
  • Prigozin A, Uziely B, and Musgrave CF: The relationship between symptom severity and symptom interference, education, age, marital status, and type of chemotherapy treatment in Israeli women with early-stage breast cancer. Oncol Nurs Forum 37, E411–E418, 2010.
  • Gianni L, Herman EH, Lipshultz SE, Minotti G, Sarvazyan N, et al.: Anthracycline cardiotoxicity: from bench to bedside. J Clin Oncol 26, 3777–3784, 2008.
  • Gilliam LA, Ferreira LF, Bruton JD, Moylan JS, Westerblad H, et al.: Doxorubicin acts through tumor necrosis factor receptor subtype 1 to cause dysfunction of murine skeletal muscle. J Appl Physiol 107, 1935–1942, 2009.
  • Min K, Kwon OS, Smuder AJ, Wiggs MP, Sollanek KJ, et al.: Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy. J Physiol 593, 2017–2036, 2015.
  • McKenna MJ, Morton J, Selig SE, and Snow RJ: Creatine supplementation increases muscle total creatine but not maximal intermittent exercise performance. J Appl Physiol 87, 2244–2252, 1999.
  • Kuznetsov AV, Margreiter R, Amberger A, Saks V, and Grimm M: Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim Biophys Acta 1813, 1144–1152, 2011.
  • Hao E, Mukhopadhyay P, Cao Z, Erdelyi K, Holovac E, et al.: Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis. Mol Med 21, 38–45, 2015.
  • Tokarska-Schlattner M, Wallimann T, and Schlattner U: Multiple interference of anthracyclines with mitochondrial creatine kinases: preferential damage of the cardiac isoenzyme and its implications for drug cardiotoxicity. Mol Pharmacol 61, 516–523, 2002.
  • Vacheron MJ, Clottes E, Chautard C, and Vial C: Mitochondrial creatine kinase interaction with phospholipid vesicles. Arch Biochem Biophys 344, 316–324, 1997.
  • Komura K, Hobbiebrunken E, Wilichowski EK, and Hanefeld FA: Effectiveness of creatine monohydrate in mitochondrial encephalomyopathies. Pediatr Neurol 28, 53–58, 2003.
  • Tarnopolsky MA: The mitochondrial cocktail: rationale for combined nutraceutical therapy in mitochondrial cytopathies. Adv Drug Del Rev 60, 1561–1567, 2008.
  • Gilliam LA, Moylan JS, Patterson EW, Smith JD, Wilson AS, et al.: Doxorubicin acts via mitochondrial ROS to stimulate catabolism in C2C12 myotubes. Am J Physiol Cell Physiol 302, C195–C202, 2012.
  • Yu AP, Pei XM, Sin TK, Yip SP, Yung BY, et al.: Acylated and unacylated ghrelin inhibit doxorubicin-induced apoptosis in skeletal muscle. Acta Physiol 211, 201–213, 2014.
  • Hayward R and Hydock DS: Doxorubicin cardiotoxicity in the rat: an in vivo characterization. J Am Assoc Lab Anim Sci 46, 20–32, 2007.
  • Hydock DS, Lien CY, and Hayward R: Anandamide preserves cardiac function and geometry in an acute doxorubicin cardiotoxicity rat model. J Cardiovasc Pharmacol Ther 14, 59–67, 2009.
  • Hydock DS, Lien CY, Jensen BT, Schneider CM, and Hayward R: Switching to a low-fat diet attenuates the intensified doxorubicin cardiotoxicity associated with high-fat feeding. Cancer Chemother Pharmacol 71, 1551–1560, 2013.
  • Belham M, Kruger A, Mepham S, Faganello G, and Pritchard C: Monitoring left ventricular function in adults receiving anthracycline-containing chemotherapy. Eur J Heart Fail 9, 409–414, 2007.
  • Lipshultz SE, Lipsitz SR, Sallan SE, Dalton VM, Mone SM, et al.: Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 23, 2629–2636, 2005.
  • Neilan TG, Jassal DS, Perez-Sanz TM, Raher MJ, Pradhan AD, et al.: Tissue Doppler imaging predicts left ventricular dysfunction and mortality in a murine model of cardiac injury. Eur Heart J 27, 1868–1875, 2006.
  • Nousiainen T, Jantunen E, Vanninen E, and Hartikainen J: Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br J Cancer 86, 1697–1700, 2002.
  • Dalla Libera L, Vescovo G, and Volterrani M: Physiological basis for contractile dysfunction in heart failure. Curr Pharmaceut Des 14, 2572–2581, 2008.
  • Gordon A, Hultman E, Kaijser L, Kristjansson S, Rolf CJ, et al.: Creatine supplementation in chronic heart failure increases skeletal muscle creatine phosphate and muscle performance. Cardiovascular Res 30, 413–418, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.