251
Views
15
CrossRef citations to date
0
Altmetric
Review Article

Role of EGCG in Containing the Progression of Lung Tumorigenesis – A Multistage Targeting Approach

, &
Pages 334-349 | Received 15 Feb 2017, Accepted 10 Aug 2017, Published online: 23 Mar 2018

References

  • Braun L, Daudt HM, and Watson P: Overcoming the translational roadblocks: a cancer care and research model. Clin Transl Med 3, 11, 2014. doi:10.1186/2001-1326-3-11.
  • Sathiavelu MSA: High performance thin layer chromatography profile of Cassytha filiformis. Asian Pacific J Trop Biomed 2, S1431–S1435, 2012. doi:10.1016/S2221-1691(12)60431-6.
  • Craig WJ: Health-promoting properties of common herbs. Am J Clin Nutr 70, 491S–499S, 1999. doi:10.1093/ajcn/70.3.491s.
  • Bodeker CBG, Ong CK, Grundy CK, Burford G, and Shein K: WHO global atlas of traditional, complementary and alternative medicine. World Health Organization, Geneva, Switzerland, 2005.
  • Calapai G: European legislation on herbal medicines: a look into the future. Drug Saf 31, 428–431, 2008. doi:10.2165/00002018-200831050-00009.
  • Anquez-Traxler C: The legal and regulatory framework of herbal medicinal products in the European Union: a focus on the traditional herbal medicines category. Drug Inf J 45, 15–23, 2011. doi:10.1177/009286151104500102.
  • Doll R and Peto R: The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66, 1191–1308, 1981. doi:10.1093/jnci/66.6.1192.
  • Timothy J, Key1 AS, Willett WC, Allen NE, Spencer EA, et al.: Diet, nutrition and the prevention of cancer. Public Health Nutr 7, 187–200, 2004.
  • Yang CS, Wang X, Lu G, and Picinich SC: Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9, 429–439, 2009. doi:10.1038/nrc2641.
  • Pandey KB and Rizvi SI: Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2, 270–278, 2009. doi:10.4161/oxim.2.5.9498.
  • Takagi A, Kano M, and Kaga C: Possibility of breast cancer prevention: use of soy isoflavones and fermented soy beverage produced using probiotics. Int J Mol Sci 16, 10907–10920, 2015. doi:10.3390/ijms160510907.
  • Taguchi C, Fukushima Y, Kishimoto Y, Suzuki-Sugihara N, Saita E, et al.: Estimated dietary polyphenol intake and major food and beverage sources among elderly Japanese. Nutrients 7, 10269–10281, 2015. doi:10.3390/nu7125530.
  • Zhang M, Holman CD, Huang JP, and Xie X: Green tea and the prevention of breast cancer: a case-control study in Southeast China. Carcinogenesis 28, 1074–1078, 2007. doi:10.1093/carcin/bgl252.
  • Chhabra SK and Yang CS: Tea and prostate cancer. Epidemiol Rev 23, 106–109, 2001. doi:10.1093/oxfordjournals.epirev.a000774.
  • Peschard P and Park M: From Tpr-Met to Met, tumorigenesis and tubes. Oncogene 26, 1276–1285, 2007. doi:10.1038/sj.onc.1210201.
  • Gao YT, McLaughlin JK, Blot WJ, Ji BT, Dai Q, et al.: Reduced risk of esophageal cancer associated with green tea consumption. J Natl Cancer Inst 86, 855–858, 1994. doi:10.1093/jnci/86.11.855.
  • Fujiki H, Suganuma M, Imai K, and Nakachi K: Green tea: cancer preventive beverage and/or drug. Cancer Lett 188, 9–13, 2002. doi:10.1016/S0304-3835(02)00379-8.
  • Mukhtar H and Ahmad N: Green tea in chemoprevention of cancer. Toxicol Sci 52, 111–117, 1999. doi:10.1093/toxsci/52.suppl_1.111.
  • Siddiqui IA, Asim M, Hafeez BB, Adhami VM, Tarapore RS, et al.: Green tea polyphenol EGCG blunts androgen receptor function in prostate cancer. FASEB J 25, 1198–1207, 2011. doi:10.1096/fj.10-167924.
  • Mukhtar H and Ahmad N: Tea polyphenols: prevention of cancer and optimizing health. Am J Clin Nutr 71, 1698S–1702S; discussion 1703S-4S, 2000. doi:10.1093/ajcn/71.6.1698S.
  • Khan N, Afaq F, Saleem M, Ahmad N, and Mukhtar H: Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 66, 2500–2505, 2006. doi:10.1158/0008-5472.CAN-05-3636.
  • Gu JW, Makey KL, Tucker KB, Chinchar E, Mao X, et al.: EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1alpha and NFkappaB, and VEGF expression. Vasc Cell 5, 9, 2013. doi:10.1186/2045-824X-5-9.
  • Singh BN, Shankar S, and Srivastava RK: Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82, 1807–1821, 2011. doi:10.1016/j.bcp.2011.07.093.
  • Haqqi TM, Anthony DD, Gupta S, Ahmad N, Lee MS, et al.: Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci U S A 96, 4524–4529, 1999. doi:10.1073/pnas.96.8.4524.
  • Kim H, Hiraishi A, Tsuchiya K, and Sakamoto K: (−) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology 62, 245–255, 2010. doi:10.1007/s10616-010-9285-x.
  • Sueoka N, Suganuma M, Sueoka E, Okabe S, Matsuyama S, et al.: A new function of green tea: prevention of lifestyle-related diseases. Ann N Y Acad Sci 928, 274–280, 2001. doi:10.1111/j.1749-6632.2001.tb05656.x.
  • Weinreb O, Mandel S, Amit T, and Youdim MB: Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. J Nutr Biochem 15, 506–516, 2004. doi:10.1016/j.jnutbio.2004.05.002.
  • Kim HS, Quon MJ, and Kim JA: New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol 2, 187–195, 2014. doi:10.1016/j.redox.2013.12.022.
  • Higdon JV and Frei B: Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43, 89–143, 2003. doi:10.1080/10408690390826464.
  • Shankar S, Ganapathy S, Hingorani SR, and Srivastava RK: EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13, 440–452, 2008. doi:10.2741/2691.
  • Dona M, Dell'Aica I, Calabrese F, Benelli R, Morini M, et al.: Neutrophil restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. J Immunol 170, 4335–4341, 2003. doi:10.4049/jimmunol.170.8.4335.
  • Zhou JR, Yu L, Mai Z, and Blackburn GL: Combined inhibition of estrogen-dependent human breast carcinoma by soy and tea bioactive components in mice. Int J Cancer 108, 8–14, 2004. doi:10.1002/ijc.11549.
  • Khan N and Mukhtar H: Cancer and metastasis: prevention and treatment by green tea. Cancer Metastasis Rev 29, 435–445, 2010. doi:10.1007/s10555-010-9236-1.
  • Kavanagh KT, Hafer LJ, Kim DW, Mann KK, Sherr DH, et al.: Green tea extracts decrease carcinogen-induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture. J Cell Biochem 82, 387–398, 2001. doi:10.1002/jcb.1164.
  • Yang CS and Wang ZY: Tea and cancer. J Natl Cancer Inst 85, 1038–1049, 1993. doi:10.1093/jnci/85.13.1038.
  • Lambert JD, Hong J, Yang GY, Liao J, and Yang CS: Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am J Clin Nutr 81, 284S–291S, 2005. doi:10.1093/ajcn/81.1.284S.
  • Ohishi T, Kishimoto Y, Miura N, Shiota G, Kohri T, et al.: Synergistic effects of (−)-epigallocatechin gallate with sulindac against colon carcinogenesis of rats treated with azoxymethane. Cancer Lett 177, 49–56, 2002. doi:10.1016/S0304-3835(01)00767-4.
  • Grivennikov SI, Greten FR, and Karin M: Immunity, inflammation, and cancer. Cell 140, 883–899, 2010. doi:10.1016/j.cell.2010.01.025.
  • Nowell PC: The clonal evolution of tumor cell populations. Science 194, 23–8, 1976 doi:10.1126/science.959840.
  • Hanahan D and Weinberg RA: Hallmarks of cancer: the next generation. Cell 144, 646–674, 2011. doi:10.1016/j.cell.2011.02.013.
  • Aplin AE, Howe A, Alahari SK, and Juliano RL: Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selections. Pharmacol Rev 50, 197–263, 1998.
  • Schenk PW and Snaar-Jagalska BE: Signal perception and transduction: the role of protein kinases. Biochim Biophys Acta 1449, 1–24, 1999. doi:10.1016/S0167-4889(98)00178-5.
  • Hofer E and Schweighofer B: Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thromb Haemost 97, 355–363, 2007. doi: 07030355.
  • Schieber M and Chandel NS: ROS function in redox signaling and oxidative stress. Curr Biol 24, R453–62, 2014. doi:10.1016/j.cub.2014.03.034.
  • Goustin AS, Leof EB, Shipley GD, and Moses HL: Growth factors and cancer. Cancer Res 46, 1015–1029, 1986.
  • Yang CS, Lambert JD, Ju J, Lu G, and Sang S: Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol Appl Pharmacol 224, 265–273, 2007.. doi:10.1016/j.taap.2006.11.024.
  • Horsman MR and Vaupel P: Pathophysiological basis for the formation of the tumor microenvironment. Front Oncol 6, 66, 2016. doi:10.3389/fonc.2016.00066.
  • Vaupel P: Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13 (Suppl 3), 21–26, 2008. doi:10.1634/theoncologist.13-S3-21.
  • Carmeliet P and Jain RK: Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10, 417–427, 2011. doi:10.1038/nrd3455.
  • Kumar R, Dos Santos C, Ahluwalia TS, and Singh S: Signal transduction inhibitors as promising anticancer agents. Biomed Res Int 2015, 584170, 2015. doi:10.1155/2015/584170.
  • Ziyad S and Iruela-Arispe ML: Molecular mechanisms of tumor angiogenesis. Genes Cancer 2, 1085–1096, 2011. doi:10.1177/1947601911432334.
  • Martin TA YL, Sanders AJ, Lane J, and Jiang WG: Cancer invasion and metastasis: molecular and cellular perspective. CRC Press, Baton raton, 2013.
  • Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423–1437, 2013. doi:10.1038/nm.3394.
  • Smith HA and Kang Y: The metastasis-promoting roles of tumor-associated immune cells. J Mol Med (Berl) 91, 411–429, 2013. doi:10.1007/s00109-013-1021-5.
  • Whiteside TL: Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol 16, 3–15, 2006. doi:10.1016/j.semcancer.2005.07.008.
  • Kumar M, Jain M, Sehgal A, and Sharma VL: Modulation of CYP1A1, CYP1B1 and DNA adducts level by green and white tea in Balb/c mice. Food Chem Toxicol 50, 4375–4381, 2012. doi:10.1016/j.fct.2012.08.045.
  • Kumar M, Sharma VL, Sehgal A, and Jain M: Protective effects of green and white tea against benzo(a)pyrene induced oxidative stress and DNA damage in murine model. Nutr Cancer 64, 300–306, 2012. doi:10.1080/01635581.2012.648300.
  • Li HC, Yashiki S, Sonoda J, Lou H, Ghosh SK, et al.: Green tea polyphenols induce apoptosis in vitro in peripheral blood T lymphocytes of adult T-cell leukemia patients. Jpn J Cancer Res 91, 34–40, 2000. doi:10.1111/j.1349-7006.2000.tb00857.x.
  • Ji SJ, Han DH, and Kim JH: Inhibition of proliferation and induction of apoptosis by EGCG in human osteogenic sarcoma (HOS) cells. Arch Pharm Res 29, 363–368, 2006. doi:10.1007/BF02968585.
  • Noda C, He J, Takano T, Tanaka C, Kondo T, et al.: Induction of apoptosis by epigallocatechin-3-gallate in human lymphoblastoid B cells. Biochem Biophys Res Commun 362, 951–957, 2007. doi:10.1016/j.bbrc.2007.08.079.
  • Nihal M, Ahmad N, Mukhtar H, and Wood GS: Anti-proliferative and proapoptotic effects of (−)-epigallocatechin-3-gallate on human melanoma: possible implications for the chemoprevention of melanoma. Int J Cancer 114, 513–521, 2005. doi:10.1002/ijc.20785.
  • Balentine DA, Wiseman SA, and Bouwens LC: The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 37, 693–704, 1997. doi:10.1080/10408399709527797.
  • Valcic S, Burr JA, Timmermann BN, and Liebler DC: Antioxidant chemistry of green tea catechins. New oxidation products of (−)-epigallocatechin gallate and (−)-epigallocatechin from their reactions with peroxyl radicals. Chem Res Toxicol 13, 801–810, 2000. doi:10.1021/tx000080k.
  • Shengmin S, Tian S, Meng X, Stark RE, Rosen RT, et al.: Theadibenzotropolone A, a new type pigment from enzymatic oxidation of (−)-epicatechin and (−)-epigallocatechin gallate and characterized from black tea using LC/MS/MS. Tetrahedron Lett 43, 7129–7133, 2002. doi:10.1016/S0040-4039(02)01707-0.
  • Chow HH, Hakim IA, Vining DR, Crowell JA, Ranger-Moore J, et al.: Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin Cancer Res 11, 4627–33, 2005. doi:10.1158/1078-0432.CCR-04-2549.
  • Lambert JD, Sang S, and Yang CS: N-Acetylcysteine enhances the lung cancer inhibitory effect of epigallocatechin-3-gallate and forms a new adduct. Free Radic Biol Med 44, 1069–1074, 2008. doi:10.1016/j.freeradbiomed.2007.12.016.
  • Li S, Wu L, Feng J, Li J, Liu T, et al.: In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci Rep 6, 28479, 2016. doi:10.1038/srep28479.
  • Buac D, Shen M, Schmitt S, Kona FR, Deshmukh R, et al.: From bortezomib to other inhibitors of the proteasome and beyond. Curr Pharm Des 19, 4025–4038, 2013. doi:10.2174/1381612811319220012.
  • Leong H, Mathur PS, and Greene GL: Green tea catechins inhibit angiogenesis through suppression of STAT3 activation. Breast Cancer Res Treat 117, 505–515, 2009. doi:10.1007/s10549-008-0196-x.
  • Surh YJ: Transcription factors in the cellular signaling network as prime targets of chemopreventive phytochemicals. Cancer Res Treat 36, 275–286, 2004. doi:10.4143/crt.2004.36.5.275.
  • Chung JY, Park JO, Phyu H, Dong Z, and Yang CS: Mechanisms of inhibition of the Ras-MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (−)-epigallocatechin-3-gallate and theaflavin-3,3'-digallate. FASEB J 15, 2022–2024, 2001. doi:10.1096/fj.01-0031fje.
  • Agarwal R, Katiyar SK, Zaidi SI, and Mukhtar H: Inhibition of skin tumor promoter-caused induction of epidermal ornithine decarboxylase in SENCAR mice by polyphenolic fraction isolated from green tea and its individual epicatechin derivatives. Cancer Res 52, 3582–3588, 1992.
  • Caturla N, Vera-Samper E, Villalain J, Mateo CR, and Micol V: The relationship between the antioxidant and the antibacterial properties of galloylated catechins and the structure of phospholipid model membranes. Free Radic Biol Med 34, 648–662, 2003. doi:10.1016/S0891-5849(02)01366-7.
  • Wang ZY, Hong JY, Huang MT, Reuhl KR, Conney AH, et al.: Inhibition of N-nitrosodiethylamine- and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorigenesis in A/J mice by green tea and black tea. Cancer Res 52, 1943–1947, 1992.
  • Xu Y, Ho CT, Amin SG, Han C, and Chung FL: Inhibition of tobacco-specific nitrosamine-induced lung tumorigenesis in A/J mice by green tea and its major polyphenol as antioxidants. Cancer Res 52, 3875–3879, 1992.
  • Yang GY, Liu Z, Seril DN, Liao J, Ding W, et al.: Black tea constituents, theaflavins, inhibit 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in A/J mice. Carcinogenesis 18, 2361–2365, 1997 doi:10.1093/carcin/18.12.2361.
  • Mimoto J, Kiura K, Matsuo K, Yoshino T, Takata I, et al.: (−)-Epigallocatechin gallate can prevent cisplatin-induced lung tumorigenesis in A/J mice. Carcinogenesis 21, 915–919, 2000. doi:10.1093/carcin/21.5.915.
  • Lu G, Liao J, Yang G, Reuhl KR, Hao X, et al.: Inhibition of adenoma progression to adenocarcinoma in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model in A/J mice by tea polyphenols and caffeine. Cancer Res 66, 11494–11501, 2006. doi:10.1158/0008-5472.CAN-06-1497.
  • Zhang Q, Fu H, Pan J, He J, Ryota S, et al.: Effect of dietary Polyphenon E and EGCG on lung tumorigenesis in A/J Mice. Pharm Res 27, 1066–1071, 2010. doi:10.1007/s11095-010-0056-3.
  • Chen L, Xin X, Yuan Q, Su D, and Liu W: Phytochemical properties and antioxidant capacities of various colored berries. J Sci Food Agric 94, 180–188, 2014. doi:10.1002/jsfa.6216.
  • Mythri RB and Bharath MM: Curcumin: a potential neuroprotective agent in Parkinson's disease. Curr Pharm Des 18, 91–99, 2012. doi:10.2174/138161212798918995.
  • Yu W, Fu YC, and Wang W: Cellular and molecular effects of resveratrol in health and disease. J Cell Biochem 113, 752–759, 2012. doi:10.1002/jcb.23431.
  • Basu A, Sanchez K, Leyva MJ, Wu M, Betts NM, et al.: Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J Am Coll Nutr 29, 31–40, 2010. doi:10.1080/07315724.2010.10719814.
  • Katiyar SK, Afaq F, Perez A, and Mukhtar H: Green tea polyphenol (−)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 22, 287–294, 2001. doi:10.1093/carcin/22.2.287.
  • Murakami C, Hirakawa Y, Inui H, Nakano Y, and Yoshida H: Effect of tea catechins on cellular lipid peroxidation and cytotoxicity in HepG2 cells. Biosci Biotechnol Biochem 66, 1559–1562, 2002. doi:10.1271/bbb.66.1559.
  • Nakagawa H, Hasumi K, Woo JT, Nagai K, and Wachi M: Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (−)-epigallocatechin gallate. Carcinogenesis 25, 1567–1574, 2004. doi:10.1093/carcin/bgh168. doi:10.1093/carcin/bgh168.
  • Nakagawa H, Wachi M, Woo JT, Kato M, Kasai S, et al.: Fenton reaction is primarily involved in a mechanism of (−)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem Biophys Res Commun 292, 94–101, 2002. doi:10.1006/bbrc.2002.6622.
  • Zhou LER: Antioxidant and pro-oxidant activity of (−)-epigallocatechin-3-gallate in food emulsions: influence of pH and phenolic concentration. Food Chem Toxicol 138, 1503–1509, 2013. doi:10.1016/j.foodchem.2012.09.132.
  • Lambert JD and Elias RJ: The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501, 65–72, 2010. doi:10.1016/j.abb.2010.06.013.
  • Collins QF, Liu HY, Pi J, Liu Z, Quon MJ, et al.: Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-activated protein kinase. J Biol Chem 282, 30143–30149, 2007. doi:10.1074/jbc.M702390200.
  • Elbling L, Herbacek I, Weiss RM, Jantschitsch C, Micksche M, et al.: Hydrogen peroxide mediates EGCG-induced antioxidant protection in human keratinocytes. Free Radic Biol Med 49, 1444–1452, 2010. doi:10.1016/j.freeradbiomed.2010.08.008.
  • Wieduwilt MJ and Moasser MM: The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci 65, 1566–1584, 2008. doi:10.1007/s00018-008-7440-8.
  • Manning G, Whyte DB, Martinez R, Hunter T, and Sudarsanam S: The protein kinase complement of the human genome. Science 298, 1912–1934, 2002. doi:10.1126/science.1075762.
  • WheelerJones CPD: Cell signalling in the cardiovascular system: an overview. Heart 91, 1366–1374, 2006 doi:10.1136/hrt.2005.072280.
  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, et al.: Molecular biology of the cell. Garland Science, New York, 2002.
  • Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell 103, 211–225, 2000. doi:10.1016/S0092-8674(00)00114-8.
  • Hommes DW, Peppelenbosch MP, and van Deventer SJ: Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti-inflammatory targets. Gut 52, 144–151, 2003. doi:10.1136/gut.52.1.144.
  • Katz M, Amit I, and Yarden Y: Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta 1773, 1161–1176, 2007. doi:10.1016/j.bbamcr.2007.01.002.
  • Luo M and Fu LW: Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors. Am J Cancer Res 4, 608–628, 2014.
  • Ahmad I, Iwata T, and Leung HY: Mechanisms of FGFR-mediated carcinogenesis. Biochim Biophys Acta 1823, 850–860, 2012. doi:10.1016/j.bbamcr.2012.01.004.
  • Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, et al.: Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22, 686–707, 2008. doi:10.1038/leu.2008.26.
  • Bianco R, Melisi D, Ciardiello F, and Tortora G: Key cancer cell signal transduction pathways as therapeutic targets. Eur J Cancer 42, 290–294, 2006. doi:10.1016/j.ejca.2005.07.034.
  • Gelmon KA, Eisenhauer EA, Harris AL, Ratain MJ, and Workman P: Anticancer agents targeting signaling molecules and cancer cell environment: challenges for drug development? J Natl Cancer Inst 91, 1281–1287, 1999. doi:10.1093/jnci/91.15.1281.
  • Adjei AA: Signal transduction pathway targets for anticancer drug discovery. Curr Pharm Des 6, 361–378, 2000 doi:10.2174/1381612003400821.
  • Hong J, Lu H, Meng X, Ryu JH, Hara Y, et al.: Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (−)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res 62, 7241–7246, 2002.
  • Ahn HY, Hadizadeh KR, Seul C, Yun YP, Vetter H, et al.: Epigallocathechin-3 gallate selectively inhibits the PDGF-BB-induced intracellular signaling transduction pathway in vascular smooth muscle cells and inhibits transformation of sis-transfected NIH 3T3 fibroblasts and human glioblastoma cells (A172). Mol Biol Cell 10, 1093–1104, 1999. doi:10.1091/mbc.10.4.1093.
  • Kondo T, Ohta T, Igura K, Hara Y, and Kaji K: Tea catechins inhibit angiogenesis in vitro, measured by human endothelial cell growth, migration and tube formation, through inhibition of VEGF receptor binding. Cancer Lett 180, 139–144, 2002. doi:10.1016/S0304-3835(02)00007-1.
  • Liang YC, Lin-shiau SY, Chen CF, and Lin JK: Suppression of extracellular signals and cell proliferation through EGF receptor binding by (−)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J Cell Biochem 67, 55–65, 1997. doi:10.1002/(SICI)1097-4644(19971001)67:1%3c55::AID-JCB6%3e3.0.CO;2-V.
  • Rodriguez SK, Guo W, Liu L, Band MA, Paulson EK, et al.: Green tea catechin, epigallocatechin-3-gallate, inhibits vascular endothelial growth factor angiogenic signaling by disrupting the formation of a receptor complex. Int J Cancer 118, 1635–1644, 2006. doi:10.1002/ijc.21545.
  • Sah JF, Balasubramanian S, Eckert RL, and Rorke EA: Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J Biol Chem 279, 12755–12762, 2004. doi:10.1074/jbc.M312333200.
  • Shimizu M, Deguchi A, Hara Y, Moriwaki H, and Weinstein IB: EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem Biophys Res Commun 334, 947–953, 2005. doi:10.1016/j.bbrc.2005.06.182.
  • Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, et al.: Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 277, 34933–34940, 2002. doi:10.1074/jbc.M204672200.
  • Sachinidis A, Skach RA, Seul C, Ko Y, Hescheler J, et al.: Inhibition of the PDGF beta-receptor tyrosine phosphorylation and its downstream intracellular signal transduction pathway in rat and human vascular smooth muscle cells by different catechins. FASEB J 16, 893–895, 2002. doi:10.1096/fj.01-0799fje.
  • Weber AA, Neuhaus T, Skach RA, Hescheler J, Ahn HY, et al.: Mechanisms of the inhibitory effects of epigallocatechin-3 gallate on platelet-derived growth factor-BB-induced cell signaling and mitogenesis. FASEB J 18, 128–130, 2004. doi:10.1096/fj.03-0007fje.
  • Selleri C, Ragno P, Ricci P, Visconte V, Scarpato N, et al.: The metastasis-associated 67-kDa laminin receptor is involved in G-CSF-induced hematopoietic stem cell mobilization. Blood 108, 2476–2484, 2006. doi:10.1182/blood-2005-11-012625.
  • Leone M, Zhai D, Sareth S, Kitada S, Reed JC, et al.: Cancer prevention by tea polyphenols is linked to their direct inhibition of antiapoptotic Bcl-2-family proteins. Cancer Res 63, 8118–8121, 2003.
  • Tachibana H, Koga K, Fujimura Y, and Yamada K: A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11, 380–381, 2004. doi:10.1038/nsmb743.
  • Li M, He Z, Ermakova S, Zheng D, Tang F, et al.: Direct inhibition of insulin-like growth factor-I receptor kinase activity by (−)-epigallocatechin-3-gallate regulates cell transformation. Cancer Epidemiol Biomarkers Prev 16, 598–605, 2007. doi:10.1158/1055-9965.EPI-06-0892.
  • He Z, Tang F, Ermakova S, Li M, Zhao Q, et al.: Fyn is a novel target of (−)-epigallocatechin gallate in the inhibition of JB6 Cl41 cell transformation. Mol Carcinog 47, 172–183, 2008. doi:10.1002/mc.20299.
  • Ermakova SP, Kang BS, Choi BY, Choi HS, Schuster TF, et al.: (−)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res 66, 9260–9269, 2006. doi:10.1158/0008-5472.CAN-06-1586.
  • Shim JH, Choi HS, Pugliese A, Lee SY, Chae JI, et al.: (−)-Epigallocatechin gallate regulates CD3-mediated T cell receptor signaling in leukemia through the inhibition of ZAP-70 kinase. J Biol Chem 283, 28370–28379, 2008. doi:10.1074/jbc.M802200200.
  • Vittal R, Selvanayagam ZE, Sun Y, Hong J, Liu F, et al.: Gene expression changes induced by green tea polyphenol (−)-epigallocatechin-3-gallate in human bronchial epithelial 21BES cells analyzed by DNA microarray. Mol Cancer Ther 3, 1091–1099, 2004. doi: 3/9/1091.
  • Lo HW and Hung MC: Nuclear EGFR signalling network in cancers: linking EGFR pathway to cell cycle progression, nitric oxide pathway and patient survival. Br J Cancer 94, 184–188, 2006. doi:10.1038/sj.bjc.6602941.
  • Hou Z, Sang S, You H, Lee MJ, Hong J, et al.: Mechanism of action of (−)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Res 65, 8049–8056, 2005. doi:10.1158/0008-5472.CAN-05-0480.
  • Adachi S, Nagao T, Ingolfsson HI, Maxfield FR, Andersen OS, et al.: The inhibitory effect of (−)-epigallocatechin gallate on activation of the epidermal growth factor receptor is associated with altered lipid order in HT29 colon cancer cells. Cancer Res 67, 6493–6501, 2007. doi:10.1158/0008-5472.CAN-07-0411.
  • Adachi S, Nagao T, To S, Joe AK, Shimizu M, et al.: (−)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis 29, 1986–1993, 2008. doi:10.1093/carcin/bgn128.
  • Masuda M, Suzui M, Lim JT, Deguchi A, Soh JW, et al.: Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. J Exp Ther Oncol 2, 350–359, 2002. doi:10.1046/j.1359-4117.2002.01062.x.
  • Fitzgerald JS, Busch S, Wengenmayer T, Foerster K, de la Motte T, et al.: Signal transduction in trophoblast invasion. Chem Immunol Allergy 88, 181–199, 2005. doi: 87834.
  • Birchmeier C, Birchmeier W, Gherardi E, and Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4, 915–925, 2003. doi:10.1038/nrm1261.
  • Bigelow RL and Cardelli JA: The green tea catechins, (−)-Epigallocatechin-3-gallate (EGCG) and (−)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene 25, 1922–1930, 2006. doi:10.1038/sj.onc.1209227.
  • Yu H and Rohan T: Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92, 1472–1489, 2000. doi:10.1093/jnci/92.18.1472.
  • Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, et al.: Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis 2, 13–25, 2015. doi:10.1016/j.gendis.2014.10.004.
  • Sartippour MR, Shao ZM, Heber D, Beatty P, Zhang L, et al.: Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. J Nutr 132, 2307–2311, 2002 doi:10.1093/jn/132.8.2307.
  • Chung JY, Huang C, Meng X, Dong Z, and Yang CS: Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved. Cancer Res 59, 4610–4617, 1999.
  • Dong Z, Ma W, Huang C, and Yang CS: Inhibition of tumor promoter-induced activator protein 1 activation and cell transformation by tea polyphenols, (−)-epigallocatechin gallate, and theaflavins. Cancer Res 57, 4414–4419, 1997.
  • Dhillon AS, Meikle S, Yazici Z, Eulitz M, and Kolch W: Regulation of Raf-1 activation and signalling by dephosphorylation. EMBO J 21, 64–71, 2002. doi:10.1093/emboj/21.1.64.
  • Liang YC, Lin-Shiau SY, Chen CF, and Lin JK: Inhibition of cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest of human breast carcinoma cells by (−)-epigallocatechin-3-gallate. J Cell Biochem 75, 1–12, 1999. doi:10.1002/(SICI)1097-4644(19991001)75:1%3c1::AID-JCB1%3e3.0.CO;2-N.
  • Nam S, Smith DM, and Dou QP: Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276, 13322–13330, 2001. doi:10.1074/jbc.M004209200.
  • Gupta S, Hussain T, and Mukhtar H: Molecular pathway for (−)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Arch Biochem Biophys 410, 177–185, 2003. doi:10.1016/S0003-9861(02)00668-9.
  • Smith DM, Wang Z, Kazi A, Li LH, Chan TH, et al.: Synthetic analogs of green tea polyphenols as proteasome inhibitors. Mol Med 8, 382–392, 2002. doi: S1528365802703820.
  • Garbisa S, Biggin S, Cavallarin N, Sartor L, Benelli R, et al.: Tumor invasion: molecular shears blunted by green tea. Nat Med 5, 1216, 1999. doi:10.1038/15145.
  • Garbisa S, Sartor L, Biggin S, Salvato B, Benelli R, et al.: Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer 91, 822–832, 2001. doi:10.1002/1097-0142(20010215)91:4%3c822::AID-CNCR1070%3e3.0.CO;2-G.
  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, et al.: Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63, 7563–7570, 2003..
  • Navarro-Peran E, Cabezas-Herrera J, Garcia-Canovas F, Durrant MC, Thorneley RN, et al.: The antifolate activity of tea catechins. Cancer Res 65, 2059–2064, 2005. doi:10.1158/0008-5472.CAN-04-3469.
  • Ishii T, Mori T, Tanaka T, Mizuno D, Yamaji R, et al.: Covalent modification of proteins by green tea polyphenol (−)-epigallocatechin-3-gallate through autoxidation. Free Radic Biol Med 45, 1384–1394, 2008. doi:10.1016/j.freeradbiomed.2008.07.023.
  • Travis WD Brambilla E, Konrad Muller-Hermelink H, and Harris CC: Pathology and genetics of tumours of the lung, pleura, thymus and heart. IARC Press, Lyon, France, 2004.
  • Neuberger JS and Gesell TF: Residential radon exposure and lung cancer: risk in nonsmokers. Health Phys 83, 1–18, 2002 doi:10.1097/00004032-200207000-00001.
  • Hecht SS: Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91, 1194–1210, 1999 doi:10.1093/jnci/91.14.1194.
  • R. William Field MaBLW, DO: Occupational and Environmental Causes of Lung Cancer. Clin Chest Med 33, 681–703, 2012. doi:10.1016/j.ccm.2012.07.001.
  • Zhang Y, Wang X, Han L, Zhou Y, and Sun S: Green tea polyphenol EGCG reverse cisplatin resistance of A549/DDP cell line through candidate genes demethylation. Biomed Pharmacother 69, 285–290, 2015. doi:10.1016/j.biopha.2014.12.016.
  • Gazdar AF, Girard L, Lockwood WW, Lam WL, and Minna JD: Lung cancer cell lines as tools for biomedical discovery and research. J Natl Cancer Inst 102, 1310–1321, 2010 doi:10.1093/jnci/djq279.
  • Jiang P, Wu X, Wang X, Huang W, and Feng Q: NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget 7, 43337–43351, 2016. doi: 9712.
  • Larson CA, Blair BG, Safaei R, and Howell SB: The role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs. Mol Pharmacol 75, 324–330, 2009. doi:10.1124/mol.108.052381.
  • Wu CY, Li QZ, and Feng ZX: Non-coding RNA identification based on topology secondary structure and reading frame in organelle genome level. Genomics 107, 9–15, 2016. doi:10.1016/j.ygeno.2015.12.002.
  • Shi J, Liu F, Zhang W, Liu X, Lin B, et al.: Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncol Rep 33, 2972–2980, 2015. doi:10.3892/or.2015.3889.
  • Li JJ, Gu QH, Li M, Yang HP, Cao LM, et al.: Role of Ku70 and Bax in epigallocatechin-3-gallate-induced apoptosis of A549 cells in vivo. Oncol Lett 5, 101–106, 2013. doi:10.3892/ol.2012.972.
  • Takahashi A, Watanabe T, Mondal A, Suzuki K, Kurusu-Kanno M, et al.: Mechanism-based inhibition of cancer metastasis with (−)-epigallocatechin gallate. Biochem Biophys Res Commun 443, 1–6, 2014. doi:10.1016/j.bbrc.2013.10.094.
  • Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, et al.: Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomarkers Prev 11, 1025–1032, 2002.
  • Petroulakis E, Mamane Y, Le Bacquer O, and Shahbazian D, and Sonenberg N: mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 94, 195–9, 2006. doi:10.1038/sj.bjc.6602902.
  • Relat J, Blancafort A, Oliveras G, Cufi S, Haro D, et al.: Different fatty acid metabolism effects of (−)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer. BMC Cancer 12, 280, 2012. doi:10.1186/1471-2407-12-280.
  • Suzuki Y and Isemura M: Binding interaction between (−)-epigallocatechin gallate causes impaired spreading of cancer cells on fibrinogen. Biomed Res 34, 301–308, 2013. doi:10.2220/biomedres.34.301.
  • Zhou H, Chen JX, Yang CS, Yang MQ, Deng Y, et al.: Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC Genomics 15, S3, 2014. doi:10.1186/1471-2164-15-S11-S3.
  • Philips MR: Compartmentalized signalling of Ras. Biochem Soc Trans 33, 657–661, 2005. doi:10.1042/BST0330657.
  • Morton CL and Houghton PJ: Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc 2, 247–250, 2007. doi:10.1038/nprot.2007.25.
  • Kellar A, Egan C, and Morris D: Preclinical murine models for lung cancer: Clinical trial applications. Bio Med Res Int 2015. doi:10.1155/2015/621324.
  • Schuller HM, Porter B, Riechert A, Walker K, and Schmoyer R: Neuroendocrine lung carcinogenesis in hamsters is inhibited by green tea or theophylline while the development of adenocarcinomas is promoted: implications for chemoprevention in smokers. Lung Cancer 45, 11–18, 2004. doi:10.1016/j.lungcan.2003.12.007.
  • Sazuka M, Murakami S, Isemura M, Satoh K, and Nukiwa T: Inhibitory effects of green tea infusion on in vitro invasion and in vivo metastasis of mouse lung carcinoma cells. Cancer Lett 98, 27–31, 1995. doi:10.1016/S0304-3835(06)80006-6.
  • Wang Y, Sun S, Zhu S, Liu C, Liu Y, et al.: The efficacy and safety of pramipexole ER versus IR in Chinese patients with Parkinson's disease: a randomized, double-blind, double-dummy, parallel-group study. Transl Neurodegener 3, 11, 2014. doi:10.1186/2047-9158-3-11.
  • Li Y, Shen X, Wang X, Li A, Wang P, et al.: EGCG regulates the cross-talk between JWA and topoisomerase IIalpha in non-small-cell lung cancer (NSCLC) cells. Sci Rep 5, 11009, 2015. doi:10.1038/srep11009.
  • Huang S, Shen Q, Mao WG, Li AP, Ye J, et al.: JWA, a novel signaling molecule, involved in all-trans retinoic acid induced differentiation of HL-60 cells. J Biomed Sci 13, 357–371, 2006. https://doi.org/10.1007/s11373-005-9068-0.
  • Chen H, Bai J, Ye J, Liu Z, Chen R, et al.: JWA as a functional molecule to regulate cancer cells migration via MAPK cascades and F-actin cytoskeleton. Cell Signal 19, 1315–1327, 2007. doi:10.1016/j.cellsig.2007.01.007.
  • Wu X, Chen H, Gao Q, Bai J, Wang X, et al.: Downregulation of JWA promotes tumor invasion and predicts poor prognosis in human hepatocellular carcinoma. Mol Carcinog 53, 325–336, 2014. doi:10.1002/mc.21981.
  • Jin H, Chen JX, Wang H, Lu G, Liu A, et al.: NNK-induced DNA methyltransferase 1 in lung tumorigenesis in A/J mice and inhibitory effects of (−)-epigallocatechin-3-gallate. Nutr Cancer 67, 167–176, 2015. doi:10.1080/01635581.2015.976314.
  • Valdiglesias V1 GS, Fenech M, Neri M, and Bonassi S: γH2AX as a marker of DNA double strand breaks and genomic instability in human population. Mutation Res 753, 16, 2013 doi:10.1016/j.mrrev.2013.02.001.
  • Sah JF, Balasubramanian S, Eckert RL, and Rorke EA: Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. J Biol Chem 279, 7, 2004.
  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, et al.: Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63, 7, 2003.
  • Manna S, Banerjee S, Saha P, Roy A, Das S, et al.: Differential alterations in metabolic pattern of the spliceosomal UsnRNAs during pre-malignant lung lesions induced by benzo(a)pyrene: modulation by tea polyphenols. Mol Cell Biochem 289, 149–157, 2006. doi:10.1007/s11010-006-9158-y.
  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, et al.: Molecular cell biology. Freeman, W. H. & Company, New York, 2003.
  • Suganuma M, Saha A, and Fujiki H: New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci 102, 317–323, 2011. doi:10.1111/j.1349-7006.2010.01805.x.
  • Wessner B, Strasser EM, Koitz N, Schmuckenschlager C, Unger-Manhart N, et al.: Green tea polyphenol administration partly ameliorates chemotherapy-induced side effects in the small intestine of mice. J Nutr 137, 634–640, 2007. doi:10.1093/jn/137.3.634.
  • Zhou DH, Wang X, Yang M, Shi X, Huang W, et al.: Combination of low concentration of (−)-epigallocatechin gallate (EGCG) and curcumin strongly suppresses the growth of non-small cell lung cancer in vitro and in vivo through causing cell cycle arrest. Int J Mol Sci 14, 12023–12036, 2013. doi:10.3390/ijms140612023.
  • Forester SC and Lambert JD: Synergistic inhibition of lung cancer cell lines by (−)-epigallocatechin-3-gallate in combination with clinically used nitrocatechol inhibitors of catechol-O-methyltransferase. Carcinogenesis 35, 365–372, 2014. doi:10.1093/carcin/bgt347.
  • Amin AR, Wang D, Zhang H, Peng S, Shin HJ, et al.: Enhanced anti-tumor activity by the combination of the natural compounds (−)-epigallocatechin-3-gallate and luteolin: potential role of p53. J Biol Chem 285, 34557–34565, 2010. doi:10.1074/jbc.M110.141135.
  • Milligan SA, Burke P, Coleman DT, Bigelow RL, Steffan JJ, et al.: The green tea polyphenol EGCG potentiates the antiproliferative activity of c-Met and epidermal growth factor receptor inhibitors in non-small cell lung cancer cells. Clin Cancer Res 15, 4885–4894, 2009. doi:10.1158/1078-0432.CCR-09-0109.
  • Witschi H, Espiritu I, Ly M, Uyeminami D, Morin D, et al.: Chemoprevention of tobacco smoke-induced lung tumors by inhalation of an epigallocatechin gallate (EGCG) aerosol: a pilot study. Inhal Toxicol 16, 763–770, 2004. doi:10.1080/08958370490490400.
  • Yan Y, Cook J, McQuillan J, Zhang G, Hitzman CJ, et al.: Chemopreventive effect of aerosolized polyphenon E on lung tumorigenesis in A/J mice. Neoplasia 9, 401–405, 2007 doi:10.1593/neo.07160.
  • Singh M, Bhatnagar P, Mishra S, Kumar P, Shukla Y, et al.: PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma. Int J Nanomedicine 10, 6789–6809, 2015. doi:10.2147/IJN.S79489.
  • Sakamoto Y, Terashita N, Muraguchi T, Fukusato T, and Kubota S: Effects of epigallocatechin-3-gallate (EGCG) on A549 lung cancer tumor growth and angiogenesis. Biosci Biotechnol Biochem 77, 1799–1803, 2013. doi:10.1271/bbb.120882.
  • Zhao H, Zhu W, Xie P, Li H, Zhang X, et al.: A phase I study of concurrent chemotherapy and thoracic radiotherapy with oral epigallocatechin-3-gallate protection in patients with locally advanced stage III non-small-cell lung cancer. Radiother Oncol 110, 132–136, 2014. doi:10.1016/j.radonc.2013.10.014.
  • Zhao H, Xie P, Li X, Zhu W, Sun X, et al.: A prospective phase II trial of EGCG in treatment of acute radiation-induced esophagitis for stage III lung cancer. Radiother Oncol 114, 351–356, 2015. doi:10.1016/j.radonc.2015.02.014.
  • Wang H, Bian S, and Yang CS: Green tea polyphenol EGCG suppresses lung cancer cell growth through upregulating miR-210 expression caused by stabilizing HIF-1alpha. Carcinogenesis 32, 1881–1889, 2011. doi:10.1093/carcin/bgr218.
  • Fujiki H, Suganuma M, Okabe S, Sueoka E, Sueoka N, et al.: Cancer prevention with green tea and monitoring by a new biomarker, hnRNP B1. Mutat Res 480–481, 299–304, 2001. doi:10.1016/S0027-5107(01)00189-0.
  • Suganuma M, Okabe S, Kai Y, Sueoka N, Sueoka E, et al.: Synergistic effects of (−)-epigallocatechin gallate with (–)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Cancer Res 59, 44–47, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.