159
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Piperlongumine Induces Apoptosis in Human Melanoma Cells Via Reactive Oxygen Species Mediated Mitochondria Disruption

, , , , & ORCID Icon
Pages 502-511 | Received 21 Jul 2017, Accepted 20 Dec 2017, Published online: 15 Mar 2018

References

  • Siegel RL, Miller KD, and Jemal A: Cancer statistics. CA Cancer J Clin 66, 7–30, 2016. doi:10.3322/caac.21332.
  • Holmes D: The cancer that rises with the sun. Nature 515, S110–111, 2014. doi:10.1038/515S110a.
  • Siegel R, Ma J, Zou Z, and Jemal A: Cancer statistics. CA Cancer J Clin 64, 9–29, 2014. doi:10.3322/caac.21208.
  • Stadler S, Weina K, Gebhardt C, and Utikal J: New therapeutic options for advanced non-resectable malignant melanoma. Adv Med Sci 60, 83–88, 2014. doi:10.1016/j.advms.2014.12.002.
  • Ott PA, Hodi FS, and Robert C: CTLA-4 and PD-1/PD-L1 blockade: new immunotherapeutic modalities with durable clinical benefit in melanoma patients. Clin Cancer Res 19, 5300–5309, 2013. doi:10.1158/1078-0432.CCR-13-0143.
  • Kwong LN and Davies MA: Targeted therapy for melanoma: rational combinatorial approaches. Oncogene 33, 1–9, 2014. doi:10.1038/onc.2013.34.
  • Lee CS, Thomas CM, and Ng KE: An overview of the changing landscape of treatment for advanced melanoma. Pharmacotherapy 37, 319–333, 2017. doi:10.1002/phar.1895.
  • Chong CR and Sullivan DJ: New uses for old drugs. Nature 448, 645–646, 2007. doi:10.1038/448645a.
  • Sunila ES and Kuttan G: Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J Ethnopharmacol 90, 339–346, 2004. doi:10.1016/j.jep.2003.10.016.
  • Zhang Y, Zhang H, Yu P, Liu Q, Liu K, et al.: Effects of matrine against the growth of human lung cancer and hepatoma cells as well as lung cancer cell migration. Cytotechnology 59, 191–200, 2009. doi:10.1007/s10616-009-9211-2.
  • Tong LX and Young LC: Nutrition: the future of melanoma prevention? J Am Acad Dermatol 71, 151–160, 2004. doi:10.1016/j.jaad.2014.01.910.
  • Bezerra DP, Militão GC, de Castro FO, Pessoa C, de Moraes MO, et al.: Piplartine induces inhibition of leukemia cell proliferation triggering both apoptosis and necrosis pathways. Toxicol In Vitro 21, 1–8, 2007. doi:10.1016/j.tiv.2006.07.007.
  • Bang JS, Oh DH, Choi HM, Sur BJ, Lim SJ, et al.: Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Res Ther 11, R49, 2009. doi:10.1186/ar2662.
  • Wattanathorn J, Chonpathompikunlert P, Muchimapura S, Priprem A, and Tankamnerdthai O: Piperine, the potential functional food for mood and cognitive disorders. Food Chem Toxicol 46, 3106–3110, 2008. doi:10.1016/j.fct.2008.06.014.
  • Raj L, Ide T, Gurkar AU, Foley M, Schenone M, et al.: Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475, 231–234, 2011. doi:10.1038/nature10167.
  • Zheng J, Son DJ, Gu SM, Woo JR, Ham YW, et al.: Piperlongumine inhibits lung tumor growth via inhibition of nuclear factor kappa B signaling pathway. Sci Rep 20, 26357, 2016. doi:10.1038/srep26357.
  • Xiao Y, Shi M, Qiu Q, Huang M, Zeng S, et al.: Piperlongumine suppresses dendritic cell maturation by reducing production of reactive oxygen species and has therapeutic potential for rheumatoid arthritis. J Immunol 196, 4925–4934, 2016. doi:10.4049/jimmunol.1501281.
  • Yao L, Chen HP, and Ma Q: Piperlongumine alleviates lupus nephritis in MRL-Fas(lpr) mice by regulating the frequency of Th17 and regulatory T cell. Immunol Lett 61, 76–80, 2014. doi:10.1016/j.imlet.2014.05.001.
  • Prasad S and Tyagi AK: Historical spice as a future drug: therapeutic potential of piperlongumine. Curr Pharm Des 22, 4151–4159, 2016. doi:10.2174/1381612822666160601103027.
  • Gu SM, Yun J, Son DJ, Kim HY, Nam KT, et al.: Piperlongumine attenuates experimental autoimmune encephalomyelitis through inhibition of NF-kappaB activity. Free Radic Biol Med 103, 133–145, 2017. doi:10.1016/j.freeradbiomed.2016.12.027.
  • Bharadwaj U, Eckols TK, Kolosov M, Kasembeli MM, Adam A, et al.: Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene 34, 1341–1353, 2015. doi:10.1038/onc.2014.72.
  • Randhawa H, Kibble K, Zeng H, Moyer MP, and Reindl KM: Activation of ERK signaling and induction of colon cancer cell death by piperlongumine. Toxicol In Vitro 27, 1626–1633, 2013. doi:10.1016/j.tiv.2013.04.006.
  • Gong LH, Chen XX, Wang H, Jiang QW, Pan SS, et al.: Piperlongumine induces apoptosis and synergizes with cisplatin or paclitaxel in human ovarian cancer cells. Oxid Med Cell Longev 2014, 906804, 2014. doi:10.1155/2014/906804.
  • Ginzburg S, Golovine KV, Makhov PB, Uzzo RG, Kutikov A, et al.: Piperlongumine inhibits NF-κB activity and attenuates aggressive growth characteristics of prostate cancer cells. Prostate 74, 177–186, 2014. doi:10.1002/pros.22739.
  • Roh JL, Kim EH, Park JY, Kim JW, Kwon M, et al.: Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer. Oncotarget 5, 9227–9238, 2014. doi:10.18632/oncotarget.2402.
  • Tuong W, Cheng LS, and Armstrong AW: Melanoma: epidemiology, diagnosis, treatment, and outcomes. Dermatol Clin 30, 113–124, 2012. doi:10.1016/j.det.2011.08.006.
  • Sarnaizul E, Borjihan G, Baigude H, Aona M, et al.: LC analysis and pharmacokinetic study of synthetic piperlongumine in rat plasma after oral administration. Biomed Chromatogr 27, 821–824, 2013. doi:10.1002/bmc.2879.
  • Evan GI and Vousden KH: Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348, 2001. doi:10.1038/35077213.
  • Lee MH, Cho Y, Jung BC, Kim SH, Kang YW, et al.: Parkin induces G2/M cell cycle arrest in TNF-α-treated HeLa cells. Biochem Biophys Res Commun 464, 63–69, 2015. doi:10.1016/j.bbrc.2015.05.101.
  • Voland C, Bord A, Pe´leraux A, Pe´narier G, Carrie`re D, et al.: Repression of cell cycle-related proteins by oxaliplatin but not cisplatin in human colon cancer cells. Mol Cancer Ther 5, 2149–2157, 2006. doi:10.1158/1535-7163.MCT-05-0212.
  • Smyre CL, Saluta G, Kute TE, Kucera GL, and Bierbach U: Inhibition of DNA synthesis by a platinum-acridine hybrid agent leads to potent cell kill in non-small cell lung cancer. ACS Med Chem Lett 2, 870–874, 2011. doi:10.1021/ml2001888.
  • Berrak Ö, Akkoç Y, Arısan ED, Çoker-Gürkan A, Obakan-Yerlikaya P, et al.: The inhibition of PI3K and NFκB promoted curcumin-induced cell cycle arrest at G2/M via altering polyamine metabolism in Bcl-2 overexpressing MCF-7 breast cancer cells. Biomed Pharmacother 77, 150–60, 2016. doi:10.1016/j.biopha.2015.12.007.
  • Shrivastava S, Kulkarni P, Thummuri D, Jeengar MK, Naidu VG, et al.: Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis 19, 1148–1164, 2014. doi:10.1007/s10495-014-0991-2.
  • Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, et al.: Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci 94, 15–21, 2003. doi:10.1111/j.1349-7006.2003.tb01345.x.
  • Fesik WS: Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5, 876–885, 2005. doi:10.1038/nrc1736.
  • Kline MP, Rajkumar SV, Timm MM, Kimlinger TK, Haug JL, et al.: R-(-)-gossypol (AT-101) activates programmed cell death in multiple myeloma cells. Exp Hematol 36, 568–576, 2008. doi:10.1016/j.exphem.2008.01.003.
  • Mesner PW Jr, Budihardjo I, and Kaufmann SH: Chemotherapy-induced apoptosis. Adv Pharmaco 141, 461–499, 1997.
  • Slee EA, Adrain C, and Martin SJ: Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276, 7320–7326, 2001. doi:10.1074/jbc.M008363200.
  • Budihardjo I, Oliver H, Lutter M, Luo X, and Wang X: Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15, 269–290, 1999. doi:10.1146/annurev.cellbio.15.1.269.
  • Autret A and Martin SJ: Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol Cell 36, 355–363, 2009. doi:10.1016/j.molcel.2009.10.011.
  • Shimizu S, Narita M, and Tsujimoto Y: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483–487, 1999. doi:10.1038/20959.
  • Desagher S and Martinou JC: Mitochondria as the central control point of apoptosis. Trends Cell Biol 10, 369–377, 2000. doi:10.1016/S0962-8924(00)01803-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.