6,250
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Effects of the Green Tea Polyphenol Epigallocatechin-3-Gallate on Glioma: A Critical Evaluation of the Literature

, , &
Pages 317-333 | Received 04 May 2017, Accepted 16 Jan 2018, Published online: 23 Mar 2018

References

  • Goodenberger ML and Jenkins RB: Genetics of adult glioma. Cancer Genet 205(12), 613–621, 2012. https://doi.org/10.1016/j.cancergen.2012.10.009.
  • Raizer JJ, Fitzner KA, Jacobs DI, Bennett CL, Liebling DB, et al.: Economics of malignant gliomas: a critical review. J Oncol Practice/Am Soc Clin Oncol 11(1), e59–65, 2014. https://doi.org/10.1200/JOP.2012.000560.
  • Ho VKY, Reijneveld JC, Enting RH, Bienfait HP, Robe P, Baumert BG, et al.: Changing incidence and improved survival of gliomas. Eur J Cancer 50(13), 2309–2318, 2014. https://doi.org/10.1016/j.ejca.2014.05.019.
  • Schwartzbaum JA, Fisher JL, Aldape KD, and Wrensch M: Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol 2(9):494–503, 2006. quiz 1 p following 516. https://doi.org/10.1038/ncpneuro0289.
  • Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, et al.: The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820, 2016. https://doi.org/10.1007/s00401-016-1545-1.
  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, et al.: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109, 2007. https://doi.org/10.1007/s00401-007-0243-4.
  • The Cancer Genome Atlas Research Network: Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372(26), 2481–2498, 2015. https://doi.org/10.1056/NEJMoa1402121.
  • Kim YS, Kim SH, Cho J, Kim JW, Chang JH, et al.: MGMT gene promoter methylation as a potent prognostic factor in glioblastoma treated with temozolomide-based chemoradiotherapy: a single-institution study. Int J Radiat Oncol Biol Phys 84(3), 661–667, 2012. https://doi.org/10.1016/j.ijrobp.2011.12.086.
  • Molenaar RJ, Verbaan D, Lamba S, Zanon C, Jeuken JWM, et al.: The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone. Neuro-Oncol 16(9), 1263–1273, 2014. https://doi.org/10.1093/neuonc/nou005.
  • Verhaak, RGW , Hoadley, KA , Purdom, E, Wang, V, Qi, Y, et al.: Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer 19(1), 38–46, 2010.
  • Richard Lee P, and Chiocca EA: Evolution of malignant glioma treatment: from chemotherapy to vacines to viruses. Neurosurgery 61(0 1), 74–83, 2014.
  • Hira VV V., Ploegmakers KJ, Verbovšek U, Roing CS, Aronica EMA, et al.: CD133+ and nestin+ glioma stem-like cells reside around CD31+ arterioles in niches that express SDF-1α, CXCR4, osteopontin and cathepsin K. J Histochem Cytochem 63(7), 481–493, 2015. https://doi.org/10.1369/0022155415581689.
  • Blomqvist P, Lycke J, Strang P, Törnqvist H, and Ekbom A: Brain tumours in Sweden 1996: care and costs. J Neurol Neurosurg Psychiatry 69(6), 792–798, 2000. https://doi.org/10.1136/jnnp.69.6.792.
  • Graham HN: Green tea composition, consumption, and polyphenol chemistry. Prev Med 21(3), 334–350, 1992. https://doi.org/10.1016/0091-7435(92)90041-F.
  • Khan N, and Mukhtar H: Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett 269(2), 269–280, 2008. https://doi.org/10.1016/j.canlet.2008.04.014.
  • Chakrawarti L, Agrawal R, Dang S, Gupta S, and Gabrani R: Therapeutic effects of EGCG: a patent review. Expert Opin Ther Patents 3776(August):1–10, 2016.
  • Yuan JM, Sun C, and Butler LM: Tea and cancer prevention: epidemiological studies. Pharmacol Res 64(2), 123–135, 2011. https://doi.org/10.1016/j.phrs.2011.03.002.
  • Ahn W-S, Yoo J, Huh S-W, Kim C-K, Lee J-M, et al.: Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions. Eur J Cancer Prev : Off J Eur Cancer Prev Organ 12(5), 383–390, 2003. https://doi.org/10.1097/00008469-200310000-00007.
  • Lee M, Wrensch M, and Miike R: Dietary and tobacco risk factors for adult onset glioma in the San Francisco Bay area (California, USA). Cancer Causes Control 8(1), 13–24, 1996. https://doi.org/10.1023/A:1018470802969.
  • Blowers L, Preston-martin S, and Mack WJ: Dietary and other lifestyle factors of women with brain gliomas in Los Angeles county (California, USA). Cancer Causes Control 8, 5–12, 1997.
  • Giles GG, MacNeil JJ, Donnan G, Webley C, Staples MP, et al.: Dietary factors and the risk of glioma in adult Melbourne: results of a case-control study in Melbourne, Australia. Int J Cancer 59, 357–362, 1994. https://doi.org/10.1002/ijc.2910590311.
  • Burch J, Craib KJ., Miller A, and Howe G: An exploratory case-control study of brain tumors in adults. J Nat Cancer Inst 31(4):601–609, 1987.
  • Holick CN, Smith SG, Giovannucci E, and Michaud DS: Coffee, tea, caffeine intake, and risk of adult glioma in three prospective cohort studies. Cancer Epidemiol Biomark Prev 19(1), 39–47, 2010. https://doi.org/10.1158/1055-9965.EPI-09-0732.
  • Michaud DS, Gallo V, Schlehofer B, Tjønneland A, Olsen A, et al.: Coffee and tea intake and risk of brain tumors in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort study 1–3. Education 92(5), 1145–1150, 2010.
  • Dubrow R, Darefsky AS, Freedman ND, Hollenbeck AR, and Sinha R: Coffee, tea, soda, and caffeine intake in relation to risk of adult glioma in the NIH-AARP diet and health study. Cancer Causes Control 23(5), 757–768, 2012. https://doi.org/10.1007/s10552-012-9945-6.
  • Malerba S, Galeone C, Pelucchi C, Turati F, Hashibe M, et al.: A meta-analysis of coffee and tea consumption and the risk of glioma in adults. Cancer Causes Control 24(2), 267–276, 2013. https://doi.org/10.1007/s10552-012-0126-4.
  • Cabrera C, Giménez R, and López MC: Determination of tea components with antioxidant activity. J Agric Food Chem 51(15), 4427–4435, 2003. https://doi.org/10.1021/jf0300801.
  • Lin YS, Tsai Y, Tsay JS, and Lin JK: Factors affecting the levels of teapolyphenols and caffeine in tea leaves. J Agric Food Chem 31, 1864–1873, 2003. https://doi.org/10.1021/jf021066b.
  • Lorenz M, Urban J, Engelhardt U, Baumann G, Stangl K, and Stangl V: Green and black tea are equally potent stimuli of NO production and vasodilation: new insights into tea ingredients involved. Basic Res Cardiol 104(1), 100–110, 2009. https://doi.org/10.1007/s00395-008-0759-3.
  • Zhang M, Holman CDJ, Huang J, and Xie X: Green tea and the prevention of breast cancer: a case-control study in Southeast China. Carcinogenesis 28(5), 1074–1078, 2007. https://doi.org/10.1093/carcin/bgl252.
  • Yang CS, Wang X: Green tea and cancer prevention. Nutr Cancer 62(7), 931–937, 2010. https://doi.org/10.1080/01635581.2010.509536.
  • Nihal M, Ahsan H, Siddiqui IA, Mukhtar H, Admad N, et al.: (−)-Epigallocatechin-3-gallate (EGCG) sensitizes melanoma cells to interferon induced growth inhibition in a mouse model of human melanoma. Cell Cycle 8(13), 2057–2063, 2009. https://doi.org/10.4161/cc.8.13.8862.
  • Shankar S, Marsh L, and Srivastava RK: EGCG inhibits growth of human pancreatic tumors orthotopically implanted in Balb C nude mice through modulation of FKHRL1/FOXO3a and neuropilin. Mol Cell Biochem 372(1–2), 83–94, 2013. https://doi.org/10.1007/s11010-012-1448-y.
  • Luo T, Wang J, Yin Y, Hua H, Jing J, et al.: (−)-Epigallocatechin gallate sensitizes breast cancer cells to paclitaxel in a murine model of breast carcinoma. Breast Cancer Res 12(1), R8, 2010. https://doi.org/10.1186/bcr2473.
  • Chen TC, Wang W, Golden EB, Thomas S, Sivakumar W, et al.: Green tea epigallocatechin gallate enhances therapeutic efficacy of temozolomide in orthotopic mouse glioblastoma models. Cancer Lett 302(2), 100–108, 2011. https://doi.org/10.1016/j.canlet.2010.11.008.
  • Lin LC, Wang MN, Tseng TY, Sung JS, and Tsai TH: Pharmacokinetics of (−)-epigallocatechin-3-gallate in conscious and freely moving rats and its brain regional distribution. J Agric Food Chem 55(4), 1517–1524, 2007. https://doi.org/10.1021/jf062816a.
  • Lenting K, Verhaak R, Ter Laan M, Wesseling P, and Leenders W: Glioma: experimental models and reality. Acta Neuropathol 133(2), 1–20, 2017. https://doi.org/10.1007/s00401-017-1671-4.
  • Zhang J, Wang G, Mao Q, Li S, Xiong W, Lin Y, et al.: Glutamate dehydrogenase (GDH) regulates bioenergetics and redox homeostasis in human glioma. Oncotarget 31, 1–12, 2016.
  • Leenders WP, Kusters B, and de Waal RM: Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. Endothelium 9(2), 83–87, 2002. https://doi.org/10.1080/10623320212006.
  • Shervington A, Pawar V, Menon S, Thakkar D, and Patel R: The sensitization of glioma cells to cisplatin and tamoxifen by the use of catechin. Mol Biol Rep 36(5), 1181–1186, 2009. https://doi.org/10.1007/s11033-008-9295-3.
  • Arabinda Das, Naren B, and Swapan R: Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer 48(Suppl 2), 1–6, 2010.
  • Yokoyama S, Hirano H, Wakimaru N, and Sarker KP: Inhibitory effect of epigallocatechin-gallate on brain tumor cell lines in vitro. Neuro-Oncol 31(1), 22–28, 1999.
  • Riss TL, Moravec RA, Niles AL, Benink HA, Worzella TJ, et al.: Cell viability assays. Assay Guid Manual, 2013.
  • Martin S, Lamb HK, Brady C, Lefkove B, Bonner MY, et al.: Inducing apoptosis of cancer cells using small-molecule plant compounds that bind to GRP78. Br J Cancer 109(2), 433–43, 2013. https://doi.org/10.1038/bjc.2013.325.
  • Rahman AA, Makpol S, Jamal R, Harun R, Mokhtar N, et al.: Tocotrienol-rich fraction, [6]-gingerol and epigallocatechin gallate inhibit proliferation and induce apoptosis of glioma cancer cells. Molecules 19(9), 14528–14541, 2014. https://doi.org/10.3390/molecules190914528.
  • Li H, Li Z, Xu YM, Wu Y, Yu KK, et al.: Epigallocatechin-3-gallate induces apoptosis, inhibits proliferation and decreases invasion of glioma cell. Neurosci Bull 30(1), 67–73, 2014. https://doi.org/10.1007/s12264-013-1394-z.
  • Zhang Y, Wang SX, Ma JW, Li HY, Ye JC, et al.: EGCG inhibits properties of glioma stem-like cells and synergizes with temozolomide through downregulation of P-glycoprotein inhibition. J Neuro-Oncol 121(1), 41–52, 2015. https://doi.org/10.1007/s11060-014-1604-1.
  • Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, et al.: Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Therapy 113(23), 5927–5937, 2009.
  • Ahn HY, Hadizadeh KR, Seul C, Yun YP, Vetter H, et al.: Epigallocathechin-3 gallate selectively inhibits the PDGF-BB-induced intracellular signaling transduction pathway in vascular smooth muscle cells and inhibits transformation of sis-transfected NIH 3T3 fibroblasts and human glioblastoma cells (A172). Mol Biol Cell 10(4), 1093–1094, 1999. https://doi.org/10.1091/mbc.10.4.1093.
  • Sachinidis A, Seul C, Seewald S, Ahn HY, Ko Y, et al.: Green tea compounds inhibit tyrosine phosphorylation of PDGF β-receptor and transformation of A172 human glioblastoma. FEBS Lett 471(1), 51–55, 2000. https://doi.org/10.1016/S0014-5793(00)01360-0.
  • Agarwal A, Sharma V, Tewari R, Koul N, Joseph C, et al.: Epigallocatechin-3-gallate exhibits anti-tumor effect by perturbing redox homeostasis, modulating the release of pro-inflammatory mediators and decreasing the invasiveness of glioblastoma cells. Mol Med Rep. 1(4), 511–515, 2008.
  • McLaughlin N, Annabi B, Bouzeghrane M, Temme A, Bahary JP, et al.: The Survivin-mediated radioresistant phenotype of glioblastomas is regulated by RhoA and inhibited by the green tea polyphenol (−)-epigallocatechin-3-gallate. Brain Res 1071(1), 1–9, 2006. https://doi.org/10.1016/j.brainres.2005.10.009.
  • Siegelin MD, Habel A, and Gaiser T: Epigalocatechin-3-gallate (EGCG) downregulates PEA15 and thereby augments TRAIL-mediated apoptosis in malignant glioma. Neurosci Lett 448(1), 161–165, 2008. https://doi.org/10.1016/j.neulet.2008.10.036.
  • Annabi B, Lachambre MP, Bousquet-Gagnon N, Pagé M, Gingras D, et al.: Green tea polyphenol (−)-epigallocatechin-3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochim Biophys Acta – Mol Cell Res 1542(1–3), 209–220, 2002. https://doi.org/10.1016/S0167-4889(01)00187-2.
  • Gang L, Tang A, Lin X, Li L, Zhang S, et al.: Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol 37, 111–123, 2010.
  • Thomas F, Holly JMP, Persad R, Bahl A, and Perks CM: Green tea extract (epigallocatechin-3-gallate) reduces efficacy of radiotherapy on prostate cancer cells. Urology 78(2), 475.e15–475.e21, 2011. https://doi.org/10.1016/j.urology.2011.03.031.
  • Stupp, R, Mason, WP , Van Den Bent, MJ , Weller, M, et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10), 987–996, 2005. https://doi.org/10.1056/NEJMoa043330.
  • Shaloam D, and Tchounwou PB: Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740, 364–378, 2014. https://doi.org/10.1016/j.ejphar.2014.07.025.
  • Gupta V, Su YS, Wang W, Kardosh A, Liebes LF, et al.: Enhancement of glioblastoma cell killing by combination treatment with temozolomide and tamoxifen or hypericin. Neurosurg Focus 20(4), E20, 2006. https://doi.org/10.3171/foc.2006.20.4.13.
  • Krupkova O, Ferguson SJ, and Wuertz-kozak K: Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem 37, 1–12, 2016. https://doi.org/10.1016/j.jnutbio.2016.01.002.
  • Sang S, Lee M-J, Hou Z, Ho C-T, and Yang CS: Stability of tea polyphenol (−)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J Agric Food Chem 53, 9478–9484, 2005. https://doi.org/10.1021/jf0519055.
  • Komatsu Y, Suematsu S, Hisanobu Y, Saigo H, Matsuda R, et al.: Effects of pH and temperature on reaction kinetics of catechins in green tea infusion effects of pH and temperature on reaction kinetics of catechins in green tea infusion. Biosci Biotechnol Biochem 57(6), 907–910, 1993. https://doi.org/10.1271/bbb.57.907.
  • Zimeri J, and Tong CH: Degradation kinetics of (−)-epigallocatechin gallate as a function of pH and dissolved oxygen in a liquid model system. J Food Sci 64(5), 753–758, 1999. https://doi.org/10.1111/j.1365-2621.1999.tb15905.x.
  • Chen L, Lee M, Li HE, Yang CS, and Al CET: Absportion, distribution, and elimination of tea polyphenols in rats. Drug Metab Dispos 25(9), 0–5, 1997.
  • Lambert JD, Lee M, Lu H, Meng X, Ju J, et al.: Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice 1, 2. J Nutr 133(12), 4172–4177, 2003. https://doi.org/10.1093/jn/133.12.4172.
  • Nakagawa K, and Miyazawa T: Absorption and distribution of tea catechin, (−)-epigallocatechin-3-gallate, in the rat. J Nutr Sci Vitaminol 43(6), 679–684, 1997. https://doi.org/10.3177/jnsv.43.679.
  • Henning SM, Niu Y, Lee NH, Thames GD, Minutti RR, et al.: Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract. Am J Clin Nutr 80, 1558–1564, 2004. https://doi.org/10.1093/ajcn/80.6.1558.
  • Saber R, Ahmed I, Liu G, Renzetti A, Farshi P, et al.: Biological and mechanistic characterization of noval prodrugs of green tea polyphenol epigallocatechin gallate analogs in human leiomyoma cell lines. J Cell Biochem 117, 2357–2369, 2016. https://doi.org/10.1002/jcb.25533.
  • Lam WH, Kazi A, Kuhn DJ, Chow LMC, Chan ASC, et al.: A potential prodrug for a green tea polyphenol proteasome inhibitor: evaluation of the peracetate ester of (−)-epigallocatechin gallate [(−)-EGCG]. Bioorg Med Chem 12, 5587–5593, 2004. https://doi.org/10.1016/j.bmc.2004.08.002.
  • Landis-piwowar KR, Huo C, Chen D, Milacic V, Shi G, et al.: A novel prodrug of the green tea polyphenol (À)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res 2(11), 4303–4311, 2007. https://doi.org/10.1158/0008-5472.CAN-06-4699.
  • Lee S, Chan W, Lee T, Lam W, Chan T, et al.: Effect of a prodrug of the green tea polyphenol (−)-epigallocatechin-3-gallate on the growth of androgen-independent prostate cancer in vivo. Nutr Cancer 60(4), 483–491, 2008. https://doi.org/10.1080/01635580801947674.
  • Chiu C, Hui W, Gene X, Wai C, Tao M, et al.: Prodrug of green tea epigallocatechin-3-gallate (Pro-EGCG) as a potent anti-angiogenesis agent for endometriosis in mice. Angiogenesis 31, 59–69, 2013. https://doi.org/10.1007/s10456-012-9299-4.
  • Lambert JD, Hong J, Kim DH, Mishin VM, and Yang CS: Piperine enhances the bioavailability of the tea polyphenol (−)-Epigallocatechin-3-gallate in mice. J Nutr 134(8), 1948–1952, 2004. https://doi.org/10.1093/jn/134.8.1948.
  • Tyagi N, De R, and Popat A: Cancer therapeutics with epigallocatechin-3-gallate encapsulated in biopolymeric nanoparticles. Int J Pharm 518(1–2), 220–227, 2017. https://doi.org/10.1016/j.ijpharm.2016.12.030.
  • Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, and Kalaiselvi P: Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (−)-epigallocatechin-3-gallate. Int J Dev Neurosci 26(2), 217–223, 2008. https://doi.org/10.1016/j.ijdevneu.2007.12.003.
  • Boldrini L, Pistolesi S, Gisfredi S, Ursino S, Alì G, et al.: Telomerase activity and hTERT mRNA expression in glial tumors. Int J Oncol 28(6), 1555–1560, 2006.
  • Sadava D, Whitlock E, and Kane SE: The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem Biophys Res Commun 360(1), 233–237, 2007. https://doi.org/10.1016/j.bbrc.2007.06.030.
  • Lin SC, Li WC, Shih JW, Hong KF, Pan YR, and Lin JJ: The tea polyphenols EGCG and EGC repress mRNA expression of human telomerase reverse transcriptase (hTERT) in carcinoma cells. Cancer Lett 236(1), 80–88, 2006. https://doi.org/10.1016/j.canlet.2005.05.003.
  • Lee AS: GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res 67(8), 3496–3499, 2007. https://doi.org/10.1158/0008-5472.CAN-07-0325.
  • Pyrko P, Schöntha AH, Hofman FM, Chen TC, and Lee AS: The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67(20), 9809–9816, 2007. https://doi.org/10.1158/0008-5472.CAN-07-0625.
  • Bhattacharjee R, Devi A, and Mishra S: Molecular docking and molecular dynamics studies reveal structural basis of inhibition and selectivity of inhibitors EGCG and OSU-03012 toward glucose regulated protein-78 (GRP78) overexpressed in glioblastoma. J Mol Model 21(10), 2015. https://doi.org/10.1007/s00894-015-2801-3.
  • Ermakova SP, Kang BS, Choi BY, Choi HS, Schuster TF, et al.: (−)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res 66(18), 9260–9269, 2006. https://doi.org/10.1158/0008-5472.CAN-06-1586.
  • Chakravarti A, Zhai GG, Zhang M, Malhotra R, Latham DE, et al.: Survivin enhances radiation resistance in primary human glioblastoma cells via caspase-independent mechanisms. Oncogene 23(45), 7494–7506, 2004. https://doi.org/10.1038/sj.onc.1208049.
  • Peek GW, and Tollefsbol TO: Down-regulation of hTERT and cyclin D1 transcription via PI3K/Akt and TGF-β pathways in MCF-7 cancer cells with PX-866 and raloxifene. Exp Cell Res 344(1), 1–8, 2016. https://doi.org/10.1016/j.yexcr.2016.03.022.
  • Pujari R, Jose J, Bhavnani V, Kumar N, Shastry P, et al.: Tamoxifen-induced cytotoxicity in breast cancer cells is mediated by glucose-regulated protein 78 (GRP78) via AKT (Thr308) regulation. Int J Biochem Cell Biol 77, 57–67, 2016. https://doi.org/10.1016/j.biocel.2016.05.021.
  • Wang L, Wang C, Jia Y, Liu Z, Shu X, et al.: Resveratrol increases anti-proliferative activity of bestatin through downregulating P-glycoprotein expression via inhibiting PI3K/Akt/mTOR pathway in K562/ADR cells. J Cell Biochem 117(5), 1233–1239, 2016. https://doi.org/10.1002/jcb.25407.
  • Xia Y, Yang L, Xue G, Zhang C, and Guo C: Combining GRP78 suppression and MK2206-induced Akt inhibition decreases doxorubicin-induced P-glycoprotein expression and mitigates chemoresistance in human osteosarcoma. Oncotarget 7(35), 56371–56382, 2016.
  • Strawns LM, Mann E, Elligerm SS, Chus LM, Germains LL, et al.: Inhibition of glioma cell growth by a truncated platelet-derived growth factor beta receptor. J Biol Chem 269(33), 21215–21222, 1994.
  • Zhang J, Chen T, Mao Q, Lin J, Jia J, et al.: PDGFR-β-activated ACK1-AKT signaling promotes glioma tumorigenesis. Int J Cancer 136(8), 1769–1780, 2015. https://doi.org/10.1002/ijc.29234.
  • Westermark B, Heldin CH, and Nister M: Platelet-derived growth factor in human glioma. Glia 15(3), 257–263, 1995. https://doi.org/10.1002/glia.440150307.
  • Masamune A, Kikuta K, Satoh M, Suzuki N, and Shimosegawa T: Green tea polyphenol epigallocatechin-3-gallate blocks PDGF-induced proliferation and migration of rat pancreatic stellate cells. World J Gastroenterol 11(22), 3368–33674, 2005. https://doi.org/10.3748/wjg.v11.i22.3368.
  • Sakata R, Ueno T, Nakamura T, Sakamoto M, Torimura T, et al.: Green tea polyphenol epigallocatechin-3-gallate inhibits platelet-derived growth factor-induced proliferation of human hepatic stellate cell line LI90. J Hepatol 40(1), 52–59, 2004. https://doi.org/10.1016/S0168-8278(03)00477-X.
  • Weber AA, Neuhaus T, Skach RA, Hescheler J, Ahn HY, et al.: Mechanisms of the inhibitory effects of epigallocatechin-3 gallate on platelet-derived growth factor-BB-induced cell signaling and mitogenesis. FASEB J: Off Publ Fed Am Soc Exp Biol 18(1), 128–130, 2004. https://doi.org/10.1096/fj.03-0007fje.
  • Lamm GM, and Christofori G: Impairment of survival factor function potentiates chemotherapy-induced apoptosis in tumor cells. Cancer Res 58(4), 801–807, 1998.
  • Li M, He Z, Ermakova S, Zheng D, Tang F, et al.: Direct inhibition of Insulin-like growth Factor-I receptor kinase activity by (À)ÀEpigallocatechin-3-gallate regulates cell transformation. Cell Prolif 16(March), 598–605, 2007.
  • Kang H-G, Jenabi JM, Liu XF, Reynolds CP, Triche TJ, et al.: Inhibition of the insulin-like growth factor I receptor by epigallocatechin gallate blocks proliferation and induces the death of Ewing tumor cells. Mol Cancer Ther 9(5), 1396–1407, 2010. https://doi.org/10.1158/1535-7163.MCT-09-0604.
  • Vu HA, Beppu Y, Chi HT, Sasaki K, Yamamoto H, et al.: Green tea epigallocatechin gallate exhibits anticancer effect in human pancreatic carcinoma cells via the inhibition of both focal adhesion kinase and insulin-like growth factor-I receptor. J Biomed Biotechnol 31, 290516, 2010. https://doi.org/10.1155/2010/290516.
  • Chen FX, Qian YR, Duan YH, Ren WW, Yang Y, et al.: Down-regulation of 67LR reduces the migratory activity of human glioma cells in vitro. Brain Res Bull 79(6), 402–408, 2009. https://doi.org/10.1016/j.brainresbull.2009.04.019.
  • Menard S, Tagliabue E, and Colnaghi MI: The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat 137–145, 1998. https://doi.org/10.1023/A:1006171403765.
  • Tachibana H, Koga K, Fujimura Y, and Yamada K: A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11(4), 380–381, 2004. https://doi.org/10.1038/nsmb743.
  • Annabi B, Bouzeghrane M, Moumdjian R, Moghrabi A, and Béliveau R: Probing the infiltrating character of brain tumors: Inhibition of RhoA/ROK-mediated CD44 cell surface shedding from glioma cells by the green tea catechin EGCg. J Neurochem 94(4), 906–916, 2005. https://doi.org/10.1111/j.1471-4159.2005.03256.x.
  • Annabi B, Thibeault S, Moumdjian R, and Béliveau R: Hyaluronan cell surface binding is induced by type I collagen and regulated by caveolae in glioma cells. J Biol Chem 279(21), 21888–21896, 2004. https://doi.org/10.1074/jbc.M313694200.
  • Demeule M, Brossard M, Pagé M, Gingras D, and Béliveau R: Matrix metalloproteinase inhibition by green tea catechins. Biochim Biophys Acta 1478(1), 51–60, 2000. https://doi.org/10.1016/S0167-4838(00)00009-1.
  • Mook ORF, Frederiks WM, and Van Noorden CJ: The role of gelatinases in colorectal cancer progression and metastasis. Biochim Biophys Acta 1705, 69–89, 2004.
  • Boyerinas B, Zafrir M, Yesilkanal AE, Price TT, Hyjek EM, et al.: Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121(24), 4821–4832, 2013. https://doi.org/10.1182/blood-2012-12-475483.
  • Sugahara KN, Murai T, Nishinakamura H, Kawashima H, Saya H, et al.: Hyaluronan oligosaccharides induce CD44 cleavage and promote cell migration in CD44-expressing tumor cells. J Biol Chem 278(34), 32259–32265, 2003. https://doi.org/10.1074/jbc.M300347200.
  • Okada H, Yoshida J, Sokabe M, Wakabayashi T, and Hagiwara M: Suppression of CD44 expression decreases migration and invasion of human glioma cells. Int J Cancer 66(2), 255–260, 1996. https://doi.org/10.1002/(SICI)1097-0215(19960410)66:2%3c255::AID-IJC20%3e3.0.CO;2-A.
  • Pan H, Wang H, Zhu L, Mao L, Qiao L, et al.: The role of Nrf2 in migration and invasion of human glioma cell U251. World Neurosurg 80(3–4), 363–370, 2013. https://doi.org/10.1016/j.wneu.2011.06.063.
  • Dinarello CA: The paradox of pro-inflammatory cytokines in cancer. Cancer Metastasis Rev 25(3), 307–313, 2006. https://doi.org/10.1007/s10555-006-9000-8.
  • Kim MH, Jung MA, Hwang YS, Jeong M, Kim SM, et al.: Regulation of urokinase plasminogen activator by epigallocatechin-3-gallate in human fibrosarcoma cells. Eur J Pharmacol 487(1–3), 1–6, 2004. https://doi.org/10.1016/j.ejphar.2003.12.031.
  • Loeffler S, Fayard B, Weis J, and Weissenberger J: Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. Int J Cancer 115(2), 202–213, 2005. https://doi.org/10.1002/ijc.20871.
  • Park S-S, Park S-K, Lim J-H, Choi YH, Kim W-J, et al.: Esculetin inhibits cell proliferation through the Ras/ERK1/2 pathway in human colon cancer cells. Oncol Rep 25, 223–230, 2011.
  • Lakka SS, Gondi CS, Yanamandra N, Invasion GC, Growth T, et al.: Synergistic down-regulation of urokinase plasminogen activator receptor and matrix metalloproteinase-9 in SNB19 glioblastoma cells efficiently inhibits glioma cell invasion, angiogenesis, and tumor growth synergistic down-regulation of urokinase plasmin. Cancer Res (20), 2454–2461, 2003.
  • Hanahan D, and Weinberg RA: Hallmarks of cancer: the next generation. Cell 144(5), 646–674, 2011. https://doi.org/10.1016/j.cell.2011.02.013.
  • Wolf A, Agnihotri S, and Guha A: Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget 1(7), 552–62, 2010.
  • Navis AC, Verrijp K, Niclou SP, Bjerkvig R, Wesseling P et al.: Glutamate as chemotactic fuel for diffuse glioma cells: are they glutamate suckers? Biochim Biophys Acta – Rev Cancer 1846(1), 66–74, 2014. https://doi.org/10.1016/j.bbcan.2014.04.004.
  • Molenaar RJ, Radivoyevitch T, Maciejewski JP, van Noorden CJF, and Bleeker FE: The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim Biophys Acta – Rev Cancer 1846(2), 326–341, 2014. https://doi.org/10.1016/j.bbcan.2014.05.004.
  • Li C, Li M, Chen P, Narayan S, Matschinsky FM, et al.: Green tea polyphenols control dysregulated glutamate dehydrogenase in transgenic mice by hijacking the ADP activation site. J Biol Chem 286(39), 34164–34174, 2011. https://doi.org/10.1074/jbc.M111.268599.
  • Li C, Allen A, Kwagh J, Doliba NM, Qin W, et al.: Green tea polyphenols modulate insulin secretion by inhibiting glutamate dehydrogenase. J Biol Chem 281(15), 10214–10221, 2006. https://doi.org/10.1074/jbc.M512792200.