751
Views
131
CrossRef citations to date
0
Altmetric
Review Article

Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer

, &
Pages 350-375 | Received 21 Jun 2017, Accepted 02 Jan 2018, Published online: 26 Mar 2018

References

  • Horneber M, Bueschel G, Dennert G, Less D, Ritter E, et al.: How many cancer patients use complementary and alternative medicine: a systematic review and metaanalysis. Integrative Cancer Therapies 11, 187–203, 2012. doi:10.1177/1534735411423920.
  • Bishop FL, Prescott P, Chan YK, Saville J, von Elm E, et al.: Prevalence of complementary medicine use in pediatric cancer: a systematic review. Pediatrics 125, 768–776, 2010. doi:10.1542/peds.2009-1775.
  • Perlman A, Lontok O, Huhmann M, Parrott JS, Simmons LA, et al.: Prevalence and correlates of postdiagnosis initiation of complementary and alternative medicine among patients at a comprehensive cancer center. J Oncol Pract 9, 34–41, 2013. doi:10.1200/JOP.2012.000634.
  • Rayburn ER, Ezell SJ, and Zhang R: Anti-inflammatory agents for cancer therapy. Mol Cell Pharmacol 1, 29–43, 2009. doi:10.4255/mcpharmacol.09.05.
  • Bismark RS, Chen HB, Dy GK, Gage-Bouchard EA, and Mahoney MC: Complementary and alternative medicine use among patients with thoracic malignancies. Support Care Cancer 22, 1857–1866, 2014. doi:10.1007/s00520-014-2144-0.
  • Sing MF, Yang WS, Gao S, Gao J, and Xiang YB: Epidemiological studies of the association between tea drinking and primary liver cancer: a meta-analysis. Eur J Cancer Prev 20, 157–165, 2011. doi:10.1097/CEJ.0b013e3283447497.
  • Tang NP, Zhou B, Wang B, Yu RB, and Ma J: Flavonoids intake and risk of lung cancer: a meta-analysis. Jpn J Clin Oncol 39, 352–359, 2009. doi:10.1093/jjco/hyp028.
  • Dong JY and Qin LQ: Soy isoflavones consumption and risk of breast cancer incidence or recurrence: a meta-analysis of prospective studies. Breast Cancer Res Treat 125, 315–323, 2011. doi:10.1007/s10549-010-1270-8.
  • Hwang YW, Kim SY, Jee SH, Kim YN, and Nam CM: Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. Nutr Cancer 61, 598–606, 2009. doi:10.1080/01635580902825639.
  • Sun CL, Yuan JM, Koh WP, and Yu MC: Green tea, black tea and breast cancer risk: a meta-analysis of epidemiological studies. Carcinogenesis 27, 1310–1315, 2006. doi:10.1093/carcin/bgi276.
  • Seely D, Mills EJ, Wu P, Verma S, and Guyatt GH: The effects of green tea consumption on incidence of breast cancer and recurrence of breast cancer: a systematic review and meta-analysis. Integr Cancer Ther 4, 144–155, 2005. doi:10.1177/1534735405276420.
  • Nagle CM, Olsen CM, Bain CJ, Whiteman DC, Green AC, et al.: Tea consumption and risk of ovarian cancer. Cancer Causes Control 21, 1485–1491, 2010. doi:10.1007/s10552-010-9577-7.
  • Butler LM and Wu AH: Green and black tea in relation to gynecologic cancers. Mol Nutr Food Res 55, 931–940, 2011. doi:10.1002/mnfr.201100058.
  • Boehm K, Borrelli F, Ernst E, Habacher G, Hung SK, et al.: Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst Rev CD005004, 2009. doi:10.1002/14651858.CD005004.pub2.
  • Zheng J, Yang B, Huang T, Yu Y, Yang J, et al.: Green tea and black tea consumption and prostate cancer risk: an exploratory meta-analysis of observational studies. Nutr Cancer 63, 663–672, 2011. doi:10.1080/01635581.2011.570895.
  • Kang H, Rha SY, Oh KW, and Nam CM: Green tea consumption and stomach cancer risk: a meta-analysis. Epidemiol Health 32, e2010001, 2010. doi:10.4178/epih/e2010001.
  • Tang N, Wu Y, Zhou B, Wang B, and Yu R: Green tea, black tea consumption and risk of lung cancer: a meta-analysis. Lung Cancer 65, 274–283, 2009. doi:10.1016/j.lungcan.2008.12.002.
  • Fritz H, Seely D, Kennedy DA, Fernandes R, Cooley K, et al.: Green tea and lung cancer: a systematic review. Integr Cancer Ther 12, 7–24, 2013. doi:10.1177/1534735412442378.
  • Dai QY, He YY, Ho CT, Wang J, Wang SJ, et al.: Effect of interaction of epigallocatechin gallate and flavonols on color alteration of simulative green tea infusion after thermal treatment. J Food Sci Technol-Mysore 54, 2919–2928, 2017. doi:10.1007/s13197-017-2730-5.
  • Deandrea S, Foschi R, Galeone C, La Vecchia C, Negri E, et al.: Is temperature an effect modifier of the association between green tea intake and gastric cancer risk? Eur J Cancer Prev 19, 18–22, 2010. doi:10.1097/CEJ.0b013e328330eb1a.
  • Zhou Y, Li N, Zhuang W, Liu G, Wu T, et al.: Green tea and gastric cancer risk: meta-analysis of epidemiologic studies. Asia Pac J Clin Nutr 17, 159–165, 2008.
  • Myung SK, Bae WK, Oh SM, Kim Y, Ju W, et al.: Green tea consumption and risk of stomach cancer: a meta-analysis of epidemiologic studies. Int J Cancer 124, 670–677, 2009. doi:10.1002/ijc.23880.
  • Braem MG, Onland-Moret NC, Schouten LJ, Tjonneland A, Hansen L, et al.: Coffee and tea consumption and the risk of ovarian cancer: a prospective cohort study and updated meta-analysis. Am J Clin Nutr 95, 1172–1181, 2012. doi:10.3945/ajcn.111.026393.
  • Zhou B, Yang L, Wang L, Shi Y, Zhu H, et al.: The association of tea consumption with ovarian cancer risk: a metaanalysis. Am J Obstet Gynecol 197, 594.e1–594.e6, 2007. doi:10.1016/j.ajog.2007.05.027.
  • Steevens J, Schouten LJ, Verhage BA, Goldbohm RA, and van den Brandt PA: Tea and coffee drinking and ovarian cancer risk: results from the Netherlands Cohort Study and a meta-analysis. Br J Cancer 97, 1291–1294, 2007. doi:10.1038/sj.bjc.6604008.
  • Sun CL, Yuan JM, Koh WP, and Yu MC: Green tea, black tea and colorectal cancer risk: a meta-analysis of epidemiologic studies. Carcinogenesis 27, 1301–1309, 2006. doi:10.1093/carcin/bgl024.
  • Baell J and Walters MA: Chemistry: chemical con artists foil drug discovery. Nature 513, 481–483, 2014. doi:10.1038/513481a.
  • Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, et al.: The essential medicinal chemistry of curcumin. J Med Chem 60, 1620–1637, 2017. doi:10.1021/acs.jmedchem.6b00975.
  • Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, et al.: Curcumin may (not) defy science. Acs Med Chem Lett 8, 467–470, 2017. doi:10.1021/acsmedchemlett.7b00139.
  • Kim KB, Nam YA, Kim HS, Hayes AW, and Lee BM: alpha-Linolenic acid: nutraceutical, pharmacological and toxicological evaluation. Food Chem Toxicol 70, 163–178, 2014. doi:10.1016/j.fct.2014.05.009.
  • Smyth EM, Grosser T, Wang M, Yu Y, and FitzGerald GA: Prostanoids in health and disease. J Lipid Res 50 (Suppl), S423–S428, 2009. doi:10.1194/jlr.R800094-JLR200.
  • Sheng H, Shao J, Washington MK, and DuBois RN: Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J Biol Chem 276, 18075–18081, 2001. doi:10.1074/jbc.M009689200.
  • Ben-Av P, Crofford LJ, Wilder RL, and Hla T: Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett 372, 83–87, 1995.
  • Tsuji S, Kawano S, Tsujii M, Michida T, Masuda E, et al.: [Mucosal microcirculation and angiogenesis in gastrointestinal tract]. Nihon Rinsho 56, 2247–2252, 1998.
  • Kakiuchi Y, Tsuji S, Tsujii M, Murata H, Kawai N, et al.: Cyclooxygenase-2 activity altered the cell-surface carbohydrate antigens on colon cancer cells and enhanced liver metastasis. Cancer Res 62, 1567–1572, 2002.
  • Krishnamachary B, Stasinopoulos I, Kakkad S, Penet MF, Jacob D, et al.: Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts. Oncotarget 8, 17981–17994, 2017. doi:10.18632/oncotarget.14912.
  • Maturu P, Jones D, Ruteshouser EC, Hu Q, Reynolds JM, et al.: Role of cyclooxygenase-2 pathway in creating an immunosuppressive microenvironment and in initiation and progression of Wilms' tumor. Neoplasia 19, 237–249, 2017. doi:10.1016/j.neo.2016.07.009.
  • Vandoros GP, Konstantinopoulos PA, Sotiropoulou-Bonikou G, Kominea A, Papachristou GI, et al.: PPAR-gamma is expressed and NF-KB pathway is activated and correlates positively with COX-2 expression in stromal myofibroblasts surrounding colon adenocarcinomas. J Cancer Res Clin Oncol 132, 76–84, 2006. doi:10.1007/s00432-005-0042-z.
  • Koki AT and Masferrer JL: Celecoxib: a specific COX-2 inhibitor with anticancer properties. Cancer Control 9, 28–35, 2002.
  • Nagendraprabhu P and Sudhandiran G: Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2. Invest New Drugs 29, 207–224, 2011. doi:10.1007/s10637-009-9342-5.
  • Murakami A and Ohigashi H: Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int J Cancer 121, 2357–2363, 2007. doi:10.1002/ijc.23161.
  • Harris RE, Beebe-Donk J, and Alshafie GA: Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer 6, 27, 2006. doi:10.1186/1471-2407-6-27.
  • Harris RE, Casto BC, and Harris ZM: Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol 5, 677–692, 2014. doi:10.5306/wjco.v5.i4.677.
  • Rakoff-Nahoum S: Why cancer and inflammation? Yale J Biol Med 79, 123–130, 2006.
  • Acheva A, Schettino G, and Prise KM: Pro-inflammatory signaling in a 3D organotypic skin model after low LET Irradiation-NF-kappaB, COX-2 activation, and impact on cell differentiation. Front Immunol 8, 82, 2017. doi:10.3389/fimmu.2017.00082.
  • Yao C, Li G, Cai M, Qian YY, Wang LQ, et al.: Prostate cancer downregulated SIRP-alpha modulates apoptosis and proliferation through p38-MAPK/NF-kappa B/COX-2 signaling. Oncol Lett 13, 4995–5001, 2017. doi:10.3892/ol.2017.6070.
  • Madka V and Rao CV: Anti-inflammatory phytochemicals for chemoprevention of colon cancer. Current Cancer Drug Targets 13, 542–557, 2013.
  • Yiannakopoulou EC: Interaction of salicylates and the other nonsteroidal anti-inflammatory agents with breast cancer endocrine treatment systematic review. Am J Clin Oncol-Cancer Clin Trials 38, 641–644, 2015. doi:10.1097/Coc.0000000000000166.
  • Conte E, Fagone E, Fruciano M, Gili E, Iemmolo M, et al.: Anti-inflammatory and antifibrotic effects of resveratrol in the lung. Histol Histopathol 30, 523–529, 2015. doi:10.14670/Hh-30.523.
  • Wang X, Lin YW, Wu J, Zhu Y, Xu XL, et al.: Meta-analysis of nonsteroidal anti-inflammatory drug intake and prostate cancer risk. World J Surg Oncol 12, 304, 2014. doi:10.1186/1477-7819-12-304.
  • Lourenco AM, Ferreira LM, and Branco PS: Molecules of natural origin, semi-synthesis and synthesis with anti-inflammatory and anticancer utilities. Curr Pharm Des 18, 3979–4046, 2012.
  • Orlikova B, Legrand N, Panning J, Dicato M, and Diederich M: Anti-inflammatory and anticancer drugs from nature. Adv Nutrition Cancer 159, 123–143, 2014. doi:10.1007/978-3-642-38007-5_8.
  • De Stefano D, Maiuri MC, Simeon V, Grassia G, Soscia A, et al.: Lycopene, quercetin and tyrosol prevent macrophage activation induced by gliadin and IFN-gamma. Eur J Pharmacol 566, 192–199, 2007. doi:10.1016/j.ejphar.2007.03.051.
  • Venturini CM, Isakson P, and Needleman P: Non-steroidal anti-inflammatory drug-induced renal failure: a brief review of the role of cyclo-oxygenase isoforms. Curr Opin Nephrol Hypertens 7, 79–82, 1998.
  • Hoffmann A, Levchenko A, Scott ML, and Baltimore D: The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298, 1241–1245, 2002. doi:10.1126/science.1071914.
  • Liu F, Xia Y, Parker AS, and Verma IM: IKK biology. Immunol Rev 246, 239–253, 2012. doi:10.1111/j.1600-065X.2012.01107.x.
  • Basak S and Hoffmann A: Crosstalk via the NF-kappa B signaling system. Cytokine Growth Factor Rev 19, 187–197, 2008. doi:10.1016/j.cytogfr.2008.04.005.
  • Karin M and Ben-Neriah Y: Phosphorylation meets ubiquitination: The control of NF-kappa B activity. Annu Rev Immunol 18, 621–663, 2000. doi:10.1146/annurev.immunol.18.1.621.
  • Ben-Neriah Y: Regulatory functions of ubiquitination in the immune system. Nat Immunol 3, 20–26, 2002. doi:10.1038/ni0102-20.
  • Lappas M, Permezel M, Georgiou HM, and Rice GE: Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol Reprod 67, 668–673, 2002. doi:10.1095/biolreprod67.2.668.
  • Alves BN, Tsui R, Almaden J, Shokhirev MN, Davis-Turak J, et al.: I kappa B epsilon is a key regulator of B cell expansion by providing negative feedback on cRel and RelA in a stimulus-specific manner. J Immunol 192, 3121–3132, 2014. doi:10.4049/jimmunol.1302351.
  • Escoubet-Lozach L, Benner C, Kaikkonen MU, Lozach J, Heinz S, et al.: Mechanisms establishing TLR4-responsive activation states of inflammatory response genes. Plos Genetics 7, e1002401, 2011. doi:10.1371/journal.pgen.1002401.
  • Wong MM and Fish EN: Chemokines: attractive mediators of the immune response. Semin Immunol 15, 5–14, 2003. doi:10.1016/S1044-5323(02)00123-9.
  • Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, et al.: Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of I kappa B kinase. Nature 403, 103–108, 2000.
  • Yamamoto Y and Gaynor RB: Therapeutic potential of inhibition of the NF-kappa B pathway in the treatment of inflammation and cancer. J Clin Invest 107, 135–142, 2001. doi:10.1172/Jci11914.
  • Johnson GL and Lapadat R: Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911–1912, 2002. doi:10.1126/science.1072682.
  • Carter AB, Knudtson KL, Monick MM, and Hunninghake GW: The p38 mitogen-activated protein kinase is required for NF-kappa B-dependent gene expression – The role of TATA-binding protein (TBP). J Biol Chem 274, 30858–30863, 1999. doi:10.1074/jbc.274.43.30858.
  • Huang F, Cao J, Liu Q, Zou Y, Li H, et al.: MAPK/ERK signal pathway involved expression of COX-2 and VEGF by IL-1beta induced in human endometriosis stromal cells in vitro. Int J Clin Exp Pathol 6, 2129–2136, 2013.
  • Di Mari JF, Saada JI, Mifflin RC, Valentich JD, and Powell DW: HETEs enhance IL-1-mediated COX-2 expression via augmentation of message stability in human colonic myofibroblasts. Am J Physiol-Gastrointest Liver Physiol 293, G719–G728, 2007. doi:10.1152/ajpgi.00117.2007.
  • Pei XY, Dai Y, Tenorio S, Lu J, Harada H, et al.: MEK1/2 inhibitors potentiate UCN-01 lethality in human multiple myeloma cells through a Bim-dependent mechanism. Blood 110, 2092–2101, 2007. doi:10.1182/blood-2007-04-083204.
  • Cuenda A and Rousseau S: P38 MAP-Kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta-Mol Cell Res 1773, 1358–1375, 2007. doi:10.1016/j.bbamcr2007.03.010.
  • Zarubin T and Han JH: Activation and signaling of the p38 MAP kinase pathway. Cell Res 15, 11–18, 2005. doi:10.1038/sj.cr.7290257.
  • Lopez-Bergami P, Lau E, and Ronai Z: Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer 10, 379, 2010. doi:10.1038/nrc2846.
  • Lopez-Bergami P, Lau E, and Ronai Z: OPINION Emerging roles of ATF2 and the dynamic AP1 network in cancer. Nat Rev Cancer 10, 65–76, 2010. doi:10.1038/nrc2681.
  • Simmons DL, Botting RM, and Hla T: Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 56, 387–437, 2004. doi:10.1124/pr.56.3.3.
  • Maroon JC, Bost JW, Borden MK, Lorenz KM, and Ross NA: Natural antiinflammatory agents for pain relief in athletes. Neurosurg Focus 21, E11, 2006.
  • Burton TM: Monsanto arthritis-pain drug, Celebrex, surpasses Viagra's early sales success. The Wall Street Journal: New York, 1999.
  • Ehrich EW, Dallob A, De Lepeleire I, Van Hecken A, Riendeau D, et al.: Characterization of rofecoxib as a cyclooxygenase-2 isoform inhibitor and demonstration of analgesia in the dental pain model. Clin Pharmacol Ther 65, 336–347, 1999. doi:10.1016/S0009-9236(99)70113-X.
  • Boyles S: Vioxx, Celebrex Were Overused, Study Shows 3/4 of Users Had Little Need for Cox-2 Inhibitors, WebMD, 2005.
  • Ahmaditaba MA, Shahosseini S, Daraei B, Zarghi A, and Houshdar Tehrani MH: Design, synthesis, and biological evaluation of new peptide analogues as selective COX-2 inhibitors. Arch Pharm (Weinheim) 350, 2017. doi:10.1002/ardp.201700158.
  • FitzGerald GA: Coxibs and cardiovascular disease. New Engl J Med 351, 1709–1711, 2004. doi:10.1056/NEJMp048288.
  • Bresalier RS, Sandler RS, Quan H, Bolognese JA, Oxenius B, et al.: Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. New Engl J Med 352, 1092–1102, 2005. doi:10.1056/NEJMoa050493.
  • Nussmeier NA, Whelton AA, Brown MT, Langford RM, Hoeft A, et al.: Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. New Engl J Med 352, 1081–1091, 2005. doi:10.1056/NEJMoa050330.
  • Solomon SD, McMurray JJV, Pfeffer MA, Wittes J, Fowler R, et al.: Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. New Engl J Med 352, 1071–1080, 2005. doi:10.1056/NEJMoa050405.
  • Kaur C and Kapoor HC: Antioxidants in fruits and vegetables – the millennium's health. Int J Food Sci Technol 36, 703–725, 2001. doi:10.1046/j.1365-2621.2001.00513.x.
  • Liu RH: Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutrition 134, 3479s–3485s, 2004.
  • Reddy MK, Alexander-Lindo RL, and Nair MG: Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. J Agric Food Chem 53, 9268–9273, 2005. doi:10.1021/jf051399j.
  • Palozza P, Serini S, Maggiano N, Tringali G, Navarra P, et al.: beta-Carotene downregulates the steady-state and heregulin-alpha-induced COX-2 pathways in colon cancer cells. J Nutr 135, 129–136, 2005. doi:10.1093/jn/135.1.129.
  • Palozza P, Serini S, Maggiano N, Tringali G, Navarra P, et al.: beta-carotene downregulates the steady-state and heregulin-alpha-induced COX-2 pathways in colon cancer cells. J Nutr 135, 129–136, 2005.
  • Singh S, Pandey VP, Naaz H, Singh P, and Dwivedi UN: Structural modeling and simulation studies of human cyclooxygenase (COX) isozymes with selected terpenes: implications in drug designing and development. Comput Biol Med 43, 744–750, 2013. doi:10.1016/j.compbiomed.2013.02.019.
  • Wang SC, Lien HC, Xia WY, Chen IF, Lo HW, et al.: Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell 6, 251–261, 2004. doi:10.1016/j.ccr.2004.07.012.
  • Breuleux M: Role of heregulin in human cancer. Cell Mol Life Sci 64, 2358–2377, 2007. doi:10.1007/s00018-007-7120-0.
  • Firdous AP, Kuttan G, and Kuttan R: Anti-inflammatory potential of carotenoid meso-zeaxanthin and its mode of action. Pharm Biol 53, 961–967, 2015. doi:10.3109/13880209.2014.950673.
  • Talero E, Avila-Roman J, and Motilva V: Chemoprevention with phytonutrients and microalgae products in chronic inflammation and colon cancer. Curr Pharm Des 18, 3939–3965, 2012. doi:10.2174/138161212802083725.
  • Park JH, Yeo IJ, Han JH, Suh JW, Lee HP, et al.: Anti-inflammatory effect of astaxanthin in phthalic anhydride-induced atopic dermatitis animal model. Exp Dermatol 2017. doi:10.1111/exd.13437.
  • Yasui Y, Hosokawa M, Mikami N, Miyashita K, and Tanaka T: Dietary astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice via modulation of the inflammatory cytokines. Chem-Biol Interact 193, 79–87, 2011. doi:10.1016/j.cbi.2011.05.006.
  • Nagendraprabhu P and Sudhandiran G: Astaxanthin inhibits tumor invasion by decreasing extracellular matrix production and induces apoptosis in experimental rat colon carcinogenesis by modulating the expressions of ERK-2, NFkB and COX-2. Invest New Drugs 29, 207–224, 2011. doi:10.1007/s10637-009-9342-5.
  • Krishnaswamy R, Devaraj SN, and Padma VV: Lutein protects HT-29 cells against Deoxynivalenol-induced oxidative stress and apoptosis: prevention of NF-kappaB nuclear localization and down regulation of NF-kappaB and Cyclo-Oxygenase-2 expression. Free Radic Biol Med 49, 50–60, 2010. doi:10.1016/j.freeradbiomed.2010.03.016.
  • Oh J, Kim JH, Park JG, Yi YS, Park KW, et al.: Radical scavenging activity-based and AP-1-targeted anti-inflammatory effects of lutein in macrophage-like and skin keratinocytic cells. Mediat Inflamm 2013, 2013. doi:10.1155/2013/787042.
  • Palozza P, Parrone N, Catalano A, and Simone R: Tomato lycopene and inflammatory cascade: basic interactions and clinical implications. Curr Med Chem 17, 2547–2563, 2010. doi:10.2174/092986710791556041.
  • Palozza P, Sheriff A, Serini S, Boninsegna A, Maggiano N, et al.: Lycopene induces apoptosis in immortalized fibroblasts exposed to tobacco smoke condensate through arresting cell cycle and down-regulating cyclin D1, pAKT and pBad. Apoptosis 10, 1445–1456, 2005. doi:10.1007/s10495-005-1393-2.
  • Vasconcelos AG, Amorim A, Dos Santos RC, Souza JMT, de Souza LKM, et al.: Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res Int 99, 959–968, 2017. doi:10.1016/j.foodres.2017.01.017.
  • Lin HY, Huang BR, Yeh WL, Lee CH, Huang SS, et al.: Antineuroinflammatory effects of lycopene via activation of adenosine monophosphate-activated protein kinase-alpha 1/heme oxygenase-1 pathways. Neurobiol. Aging 35, 191–202, 2014. doi:10.1016/j.neurobiolaging.2013.06.020.
  • Tang FY, Pai MH, and Wang XD: Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model. J Agric Food Chem 59, 9011–9021, 2011. doi:10.1021/jf2017644.
  • Tang FY, Pai MH, Kuo YH, and Wang XD: Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer. Mol Nutr Food Res 56, 1520–1531, 2012. doi:10.1002/mnfr.201200098.
  • Chan JM, Weinberg V, Magbanua MJ, Sosa E, Simko J, et al.: Nutritional supplements, COX-2 and IGF-1 expression in men on active surveillance for prostate cancer. Cancer Causes Control 22, 141–150, 2011. doi:10.1007/s10552-010-9684-5.
  • Huang WY, Cai YZ, and Zhang Y: Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer 62, 1–20, 2010. doi:10.1080/01635580903191585.
  • Subbaramaiah K, Sue E, Bhardwaj P, Du B, Hudis CA, et al.: Dietary polyphenols suppress elevated levels of proinflammatory mediators and aromatase in the mammary gland of obese mice. Cancer Prev Res (Phila) 6, 886–897, 2013. doi:10.1158/1940-6207.CAPR-13-0140.
  • Scoditti E, Calabriso N, Massaro M, Pellegrino M, Storelli C, et al.: Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: A potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch Biochem Biophys 527, 81–89, 2012. doi:10.1016/j.abb.2012.05.003.
  • Woo JH, Lim JH, Kim YH, Suh SI, Min DS, et al.: Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene 23, 1845–1853, 2004. doi:10.1038/sj.onc.1207307.
  • Malhotra A, Nair P, and Dhawan DK: Curcumin and resveratrol synergistically stimulate p21 and regulate cox-2 by maintaining adequate zinc levels during lung carcinogenesis. Eur J Cancer Prev 20, 411–416, 2011. doi:10.1097/CEJ.0b013e3283481d71.
  • Sharma RA, Gescher AJ, and Steward WP: Curcumin: the story so far. Eur J Cancer 41, 1955–1968, 2005. doi:10.1016/j.ejca.2005.05.009.
  • Lee YK, Park SY, Kim YM, and Park OJ: Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells. Nat. Compd. Their Role Apoptotic Cell Signaling Pathways 1171, 489–494, 2009. doi:10.1111/j.1749-6632.2009.04699.x.
  • Jiang H, Deng CS, Zhang M, and Xia J: Curcumin-attenuated trinitrobenzene sulphonic acid induces chronic colitis by inhibiting expression of cyclooxygenase-2. World J Gastroenterol 12, 3848–3853, 2006
  • Gibson PR: Increased gut permeability in Crohn's disease: is TNF the link? Gut 53, 1724–1725, 2004. doi:10.1136/gut.2004.047092
  • Chun KS, Keum YS, Han SS, Song YS, Kim SH, et al.: Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF-kappa B activation. Carcinogenesis 24, 1515–1524, 2003. doi:10.1093/carcin/bgg107.
  • Griesser M, Pistis V, Suzuki T, Tejera N, Pratt DA, et al.: Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. J Biol Chem 286, 1114–1124, 2011. doi:10.1074/jbc.M110.178806.
  • Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, et al.: Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 40–41, 48-81, 2016. doi:10.1016/j.semcancer.2016.02.001.
  • Hong J, Bose M, Ju J, Ryu JH, Chen X, et al.: Modulation of arachidonic acid metabolism by curcumin and related beta-diketone derivatives: effects on cytosolic phospholipase A(2), cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25, 1671–1679, 2004. doi:10.1093/carcin/bgh165
  • Marin YE, Wall BA, Wang S, Namkoong J, Martino JJ, et al.: Curcumin downregulates the constitutive activity of NF-kappaB and induces apoptosis in novel mouse melanoma cells. Melanoma Res 17, 274–283, 2007. doi:10.1097/CMR.0b013e3282ed3d0e.
  • Rajitha B, Nagaraju GP, Shaib WL, Alese OB, Snyder JP, et al.: Novel synthetic curcumin analogs as potent antiangiogenic agents in colorectal cancer. Mol Carcinog 56, 288–299, 2017.
  • Shishodia S, Potdar P, Gairola CG, and Aggarwal BB: Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-kappa B activation through inhibition of I kappa B alpha kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis 24, 1269–1279, 2003. doi:10.1093/carcin/bgg078.
  • Shrestha S, Zhu J, Wang Q, Du X, Liu F, et al.: Melatonin potentiates the antitumor effect of curcumin by inhibiting IKKbeta/NF-kappaB/COX-2 signaling pathway. Int J Oncol 51, 1249–1260, 2017. doi:10.3892/ijo.2017.4097.
  • Bahadori F and Demiray M: A realistic view on “The essential medicinal chemistry of curcumin”. ACS Med Chem Lett 8, 893–896, 2017. doi:10.1021/acsmedchemlett.7b00284.
  • Plummer SM, Holloway KA, Manson MM, Munks RJ, Kaptein A, et al.: Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 18, 6013–6020, 1999. doi:10.1038/sj.onc.1202980.
  • Lee CW, Lin CC, Lee IT, Lee HC, and Yang CM: Activation and induction of cytosolic phospholipase A2 by TNF-alpha mediated through Nox2, MAPKs, NF-kappaB, and p300 in human tracheal smooth muscle cells. J Cell Physiol 226, 2103–2114, 2011. doi:10.1002/jcp.22537.
  • Lee KW, Kim JH, Lee HJ, and Surh YJ: Curcumin inhibits phorbol ester-induced up-regulation of cyclooxygenase-2 and matrix metalloproteinase-9 by blocking ERK1/2 phosphorylation and NF-kappaB transcriptional activity in MCF10A human breast epithelial cells. Antioxid Redox Signal 7, 1612–1620, 2005. doi:10.1089/ars.2005.7.1612.
  • Guimaraes MR, Leite FR, Spolidorio LC, Kirkwood KL, Rossa C, Jr.: Curcumin abrogates LPS-induced pro-inflammatory cytokines in RAW 264.7 macrophages. Evidence for novel mechanisms involving SOCS-1, -3 and p38 MAPK. Arch Oral Biol 58, 1309–1317, 2013. doi:10.1016/j.archoralbio.2013.07.005.
  • Kang G, Kong PJ, Yuh YJ, Lim SY, Yim SV, et al.: Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J Pharmacol Sci 94, 325–328, 2004
  • Shah VO, Ferguson JE, Hunsaker LA, Deck LM, and Vander Jagt DL: Natural products inhibit LPS-induced activation of pro-inflammatory cytokines in peripheral blood mononuclear cells. Nat Prod Res 24, 1177–1188, 2010. doi:10.1080/14786410903112680.
  • Cheng SE, Luo SF, Jou MJ, Lin CC, Kou YR, et al.: Cigarette smoke extract induces cytosolic phospholipase A2 expression via NADPH oxidase, MAPKs, AP-1, and NF-kappaB in human tracheal smooth muscle cells. Free Radic Biol Med 46, 948–960, 2009
  • Ferruelo A, de Las Heras MM, Redondo C, Ramon de Fata F, Romero I, et al.: Wine polyphenols exert antineoplasic effect on androgen resistant PC-3 cell line through the inhibition of the transcriptional activity of COX-2 promoter mediated by NF-kbeta. Actas Urol Esp 38, 429–437, 2014. doi:10.1016/j.acuro.2014.02.017.
  • Wang GX, Dai F, Yu K, Jia ZF, Zhang AL, et al.: Resveratrol inhibits glioma cell growth via targeting oncogenic microRNAs and multiple signaling pathways. Int J Oncol 46, 1739–1747, 2015. doi:10.3892/ijo.2015.2863.
  • Li C, Tang C, and He G: Tristetraprolin: a novel mediator of the anticancer properties of resveratrol. Genet Mol Res 15, 2016. doi:10.4238/gmr.15027213.
  • Harikumar KB, Kunnumakkara AB, Sethi G, Diagaradjane P, Anand P, et al.: Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer 127, 257–268, 2010. doi:10.1002/ijc.25041.
  • Serra D, Rufino AT, Mendes AF, Almeida LM, and Dinis TCP: Resveratrol modulates cytokine-induced JAK/STAT activation more efficiently than 5-aminosalicylic acid: An in vitro approach. Plos One 9, e109048, 2014. doi:10.1371/journal.pone.0109048
  • Zykova TA, Zhu F, Zhai XH, Ma WY, Ermakova SP, et al.: Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol Carcinog 47, 797–805, 2008. doi:10.1002/mc.20437.
  • Rai G, Mishra S, Suman S, Shukla Y: Resveratrol improves the anticancer effects of doxorubicin in vitro and in vivo models: a mechanistic insight. Phytomedicine 23, 233–242, 2016. doi:10.1016/j.phymed.2015.12.020.
  • Kang OH, Jang HJ, Chae HS, Oh YC, Choi JG, et al.: Anti-inflammatory mechanisms of resveratrol in activated HMC-1 cells: pivotal roles of NF-kappa B and MAPK. Pharmacol Res 59, 330–337, 2009. doi:10.1016/j.phrs.2009.01.009.
  • Banerjee S, Bueso-Ramos C, and Aggarwal BB: Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: role of nuclear factor-kappa B, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res 62, 4945–4954, 2002.
  • Lin HY, Delmas D, Vang O, Hsieh TC, Lin S, et al.: Mechanisms of ceramide-induced COX-2-dependent apoptosis in human ovarian cancer OVCAR-3 cells partially overlapped with resveratrol. J Cell Biochem 114, 1940–1954, 2013. doi:10.1002/jcb.24539.
  • Huang CS, Ma WY, Goranson A, and Dong ZG: Resveratrol suppresses cell transformation and induces apoptosis through a p53-dependent pathway. Carcinogenesis 20, 237–242, 1999. doi:10.1093/carcin/20.2.237.
  • Lin C, Crawford DR, Lin S, Hwang J, Sebuyira A, et al.: Inducible COX-2-dependent apoptosis in human ovarian cancer cells. Carcinogenesis 32, 19–26, 2011. doi:10.1093/carcin/bgq212.
  • Park SA, Na HK, and Surh YJ: Resveratrol suppresses 4-hydroxyestradiol-induced transformation of human breast epithelial cells by blocking I kappa B kinase beta-NF-kappa B signalling. Free Radical Research 46, 1051–1057, 2012. doi:10.3109/10715762.2012.671940.
  • Lin HY, Tang HY, Davis FB, and Davis PJ: Resveratrol and apoptosis. Resveratrol Health 1215, 79–88, 2011. doi:10.1111/j.1749-6632.2010.05846.x.
  • Murakami A, Nakamura Y, Koshimizu K, Takahashi D, Matsumoto K, et al.: FA15, a hydrophobic derivative of ferulic acid, suppresses inflammatory responses and skin tumor promotion: comparison with ferulic acid. Cancer Lett 180, 121–129, 2002. doi:10.1016/S0304-3835(01)00858-8.
  • Hirata A, Murakami Y, Atsumi T, Shoji M, Ogiwara T, et al.: Ferulic acid dimer inhibits lipopolysaccharide-stimulated cyclooxygenase-2 expression in macrophages. In Vivo 19, 849–853, 2005.
  • Chung CP, Hsu HY, Huang DW, Hsu HH, Lin JT, et al.: Ethyl acetate fraction of adlay bran ethanolic extract inhibits oncogene expression and suppresses DMH-induced preneoplastic lesions of the colon in f344 rats through an anti-inflammatory pathway. J Agric Food Chem 58, 7616–7623, 2010. doi:10.1021/jf101084e.
  • Jayaprakasam B, Vanisree M, Zhang YJ, Dewitt DL, and Nair MG: Impact of alkyl esters of caffeic and ferulic acids on tumor cell proliferation, cyclooxygenase enzyme, and lipid peroxidation. J Agric Food Chem 54, 5375–5381, 2006. doi:10.1021/jf060899p.
  • Das U, Manna K, Sinha M, Datta S, Das DK, et al.: Role of ferulic acid in the amelioration of ionizing radiation induced inflammation: a murine model. Plos One 9, e97599, 2014. doi:10.1371/journal.pone.0097599.
  • Shindo Y, Witt E, Han D, Epstein W, and Packer L: Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol 102, 122–124, 1994.
  • Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, and Yagi K: Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic-acid biosynthesis missing in man. J Biol Chem 269, 13685–13688, 1994.
  • Thiele JJ: Oxidative targets in the stratum corneum. Skin Pharmacol Appl Skin Physiol 14, 87–91, 2001. doi:10.1159/000056395.
  • Pinnell SR, Yang H, Omar M, Monteiro-Riviere N, DeBuys HV, et al.: Topical L-ascorbic acid: percutaneous absorption studies. Dermatol Surg 27, 137–142, 2001.
  • Zielinski JE and Pinnell S: Stabilized Ascorbic Acid Compositions and Methods Thereof , U.S. patent 7,179,841 B2, 2004.
  • Lin JY, Selim MA, Shea CR, Grichnik JM, Omar MM, et al.: UV photoprotection by combination topical antioxidants vitamin C and vitamin E. J Am Acad Dermatol 48, 866–874, 2003. doi:10.1067/mjd.2003.425.
  • Fajardo AM and Piazza GA: Chemoprevention in gastrointestinal physiology and disease. Anti-inflammatory approaches for colorectal cancer chemoprevention. Am J Physiol Gastrointest Liver Physiol 309, G59–G70, 2015. doi:10.1152/ajpgi.00101.2014.
  • Romagnolo DF and Selmin OI: Flavonoids and cancer prevention: a review of the evidence. J Nutr Gerontol Geriatr 31, 206–238, 2012. doi:10.1080/21551197.2012.702534.
  • Chung MY, Mah E, Masterjohn C, Noh SK, Park HJ, et al.: Green tea lowers hepatic COX-2 and prostaglandin E2 in rats with dietary fat-induced nonalcoholic steatohepatitis. J Med Food 18, 648–655, 2015. doi:10.1089/jmf.2014.0048.
  • Shirakami Y, Shimizu M, Tsurumi H, Hara Y, Tanaka T, et al.: EGCG and polyphenon E attenuate inflammation-related mouse colon carcinogenesis induced by AOM plus DDS. Mol Med Rep 1, 355–361, 2008.
  • Park IJ, Lee YK, Hwang JT, Kwon DY, Ha J, et al.: Green tea catechin controls apoptosis in colon cancer cells by attenuation of H2O2-stimulated COX-2 expression via the AMPK signaling pathway at low-dose H2O2. Ann N Y Acad Sci 1171, 538–544, 2009. doi:10.1111/j.1749-6632.2009.04698.x.
  • Singh T and Katiyar SK: Green tea catechins reduce invasive potential of human melanoma cells by targeting COX-2, PGE(2) receptors and epithelial-to-mesenchymal transition. Plos One 6, e25224, 2011. doi:10.1371/journal.pone.0025224
  • Shi J, Liu F, Zhang W, Liu X, Lin B, et al.: Epigallocatechin-3-gallate inhibits nicotine-induced migration and invasion by the suppression of angiogenesis and epithelial-mesenchymal transition in non-small cell lung cancer cells. Oncol Rep 33, 2972–2980, 2015. doi:10.3892/or.2015.3889.
  • Kilic U, Sahin K, Tuzcu M, Basak N, Orhan C, et al.: Enhancement of cisplatin sensitivity in human cervical cancer: epigallocatechin-3-gallate. Front Nutr 1 (28), 2014. doi:10.3389/fnut.2014.00028.
  • Ye F, Zhang GH, Guan BX, and Xu XC: Suppression of esophageal cancer cell growth using curcumin, (-)-epigallocatechin-3-gallate and lovastatin. World J Gastroenterol 18, 126–135, 2012. doi:10.3748/wjg.v18.i2.126.
  • Hwang JT, Ha J, Park IJ, Lee SK, Baik HW, et al.: Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett 247, 115–121, 2007. doi:10.1016/j.canlet.2006.03.030.
  • Singh T and Katiyar SK: Green tea polyphenol, (-)-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting beta-catenin signaling. Toxicol Appl Pharmacol 273, 418–424, 2013. doi:10.1016/j.taap.2013.09.021.
  • Peng G, Dixon DA, Muga SJ, Smith TJ, and Wargovich MJ: Green tea polyphenol (-)-epigallocatechin-3-gallate inhibits cyclooxygenase-2 expression in colon carcinogenesis. Mol Carcinog 45, 309–319, 2006. doi:10.1002/mc.20166.
  • Kim SY, Ahn BH, Min KJ, Lee YH, Joe EH, et al.: Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells. J Biol Chem 279, 38125–38133, 2004. doi:10.1074/jbc.M402085200.
  • Raja SB, Rajendiran V, Kasinathan NK, Amrithalakshmi P, Venkatabalasubramanian S, et al.: Differential cytotoxic activity of Quercetin on colonic cancer cells depends on ROS generation through COX-2 expression. Food Chem Toxicol 106, 92–106, 2017. doi:10.1016/j.fct.2017.05.006.
  • Al-Fayez M, Cai H, Tunstall R, Steward WP, and Gescher AJ: Differential modulation of cyclooxygenase-mediated prostaglandin production by the putative cancer chemopreventive flavonoids tricin, apigenin and quercetin. Cancer Chemother Pharmacol 58, 816–825, 2006. doi:10.1007/s00280-006-0228-3.
  • Granado-Serrano AB, Martin MA, Bravo L, Goya L, and Ramos S: Quercetin attenuates TNF-induced inflammation in hepatic cells by inhibiting the NF-kappa B pathway. Nutr Cancer-Int J 64, 588–598, 2012. doi:10.1080/01635581.2012.661513.
  • Han MY, Song YC, and Zhang XD: Quercetin suppresses the migration and invasion in human colon cancer caco-2 cells through regulating toll-like receptor 4/nuclear factor-kappa B pathway. Pharmacognosy Mag 12, S237–S244, 2016. doi:10.4103/0973-1296.182154.
  • Ma JQ, Li Z, Xie WR, Liu CM, and Liu SS: Quercetin protects mouse liver against CCl4-induced inflammation by the TLR2/4 and MAPK/NF-kappa B pathway. Int Immunopharmacol 28, 531–539, 2015. doi:10.1016/j.intimp.2015.06.036.
  • Kim SH, Park JG, Hong YD, Kim E, Baik KS, et al.: Src/Syk/IRAK1-targeted anti-inflammatory action of Torreya nucifera butanol fraction in lipopolysaccharide-activated RAW264.7 cells. J Ethnopharmacol 188, 167–176, 2016. doi:10.1016/j.jep.2016.05.008.
  • Jones DJL, Lamb JH, Verschoyle RD, Howells LM, Butterworth M, et al.: Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity. Br J Cancer 91, 1213–1219, 2004. doi:10.1038/sj.bjc.6602091.
  • Lai WW, Hsu SC, Chueh FS, Chen YY, Yang JS, et al.: Quercetin inhibits migration and invasion of SAS human oral cancer cells through inhibition of NF-kappa B and matrix metalloproteinase-2/-9 signaling pathways. Anticancer Res 33, 1941–1950, 2013.
  • Senthilkumar K, Arunkumar R, Elumalai P, Sharmila G, Gunadharini DN, et al.: Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochem Funct 29, 87–95, 2011. doi:10.1002/cbf.1725.
  • Cheong E, Ivory K, Doleman J, Parker ML, Rhodes M, et al.: Synthetic and naturally occurring COX-2 inhibitors suppress proliferation in a human oesophageal adenocarcinoma cell line (OE33) by inducing apoptosis and cell cycle arrest. Carcinogenesis 25, 1945–1952, 2004. doi:10.1093/carcin/bgh184.
  • Xiao XS, Shi DB, Liu LQ, Wang JS, Xie XM, et al.: Quercetin suppresses cyclooxygenase-2 expression and angiogenesis through inactivation of P300 signaling. Plos One 6, e22934, 2011. doi:10.1371/journal.pone.0022934.
  • Maurya AK and Vinayak M: Anticarcinogenic action of quercetin by downregulation of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC) via induction of p53 in hepatocellular carcinoma (HepG2) cell line. Mol Biol Rep 42, 1419–1429, 2015. doi:10.1007/s11033-015-3921-7.
  • Lee KM, Hwang MK, Lee DE, Lee KW, and Lee HJ: Protective effect of quercetin against arsenite-induced COX-2 expression by targeting PI3K in rat liver epithelial cells. J Agric Food Chem 58, 5815–5820, 2010. doi:10.1021/jf903698s.
  • Zhu X, Zeng X, Zhang X, Cao W, Wang Y, et al.: The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine 12, 623–632, 2016. doi:10.1016/j.nano.2015.10.016.
  • Lee YK, Park SY, Kim YM, Lee WS, and Park OJ: AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp Mol Med 41, 201–207, 2009. doi:10.3858/emm.2009.41.3.023.
  • Lau TY and Leung LK: Soya isoflavones suppress phorbol 12-myristate 13-acetate-induced COX-2 expression in MCF-7 cells. Br J Nutr 96, 169–176, 2006. doi:10.1079/Bjn20061639.
  • Shon YH, Park SD, and Nam KS: Effective chemopreventive activity of genistein against human breast cancer cells. J Biochem Mol Biol 39, 448–451, 2006.
  • Chung MH, Kim DH, Na HK, Kim JH, Kim HN, et al.: Genistein inhibits phorbol ester-induced NF-kappaB transcriptional activity and COX-2 expression by blocking the phosphorylation of p65/RelA in human mammary epithelial cells. Mutat Res 768, 74–83, 2014. doi:10.1016/j.mrfmmm.2014.04.003.
  • Li YS, Wu LP, Li KH, Liu YP, Xiang R, et al.: Involvement of nuclear factor kappaB (NF-kappaB) in the downregulation of cyclooxygenase-2 (COX-2) by genistein in gastric cancer cells. J Int Med Res 39, 2141–2150, 2011.
  • Dai W, Wang F, He L, Lin C, Wu S, et al.: Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial-mesenchymal transition: partial mediation by the transcription factor NFAT1. Mol Carcinog 54, 301–311, 2015. doi:10.1002/mc.22100.
  • Sarkar D, Saha P, Gamre S, Bhattacharjee S, Hariharan C, et al.: Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-kappa B pathway. Int Immunopharmacol 8, 1264–1271, 2008. doi:10.1016/j.intimp.2008.05.003.
  • Hwang JT, Ha J, and Park OJ: Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun 332, 433–440, 2005. doi:10.1016/j.bbrc.2005.04.143.
  • Zhou JM and Ibrahim RK: Tricin-a potential multifunctional nutraceutical. Phytochem Rev 9, 413–424, 2010. doi:10.1007/s11101-009-9161-5.
  • Hudson EA, Dinh PA, Kokubun T, Simmonds MSJ, and Gescher A: Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Prev 9, 1163–1170, 2000.
  • Cai H, Al-Fayez M, Tunstall RG, Platton S, Greaves P, et al.: The rice bran constituent tricin potently inhibits cyclooxygenase enzymes and interferes with intestinal carcinogenesis in ApcMin mice. Mol Cancer Ther 4, 1287–1292, 2005. doi:10.1158/1535-7163.MCT-05-0165.
  • Kim KM, Kim YS, Lim JY, Min SJ, Ko HC, et al.: Intestinal anti-inflammatory activity of Sasa quelpaertensis leaf extract by suppressing lipopolysaccharide-stimulated inflammatory mediators in intestinal epithelial Caco-2 cells co-cultured with RAW 264.7 macrophage cells. Nutr Res Pract 9, 3–10, 2015. doi:10.4162/nrp.2015.9.1.3.
  • Shalini V, Pushpan CK, Sindhu G, Jayalekshmy A, and Helen A: Tricin, flavonoid from Njavara reduces inflammatory responses in hPBMCs by modulating the p38MAPK and PI3K/Akt pathways and prevents inflammation associated endothelial dysfunction in HUVECs. Immunobiology 221, 137–144, 2016. doi:10.1016/j.imbio.2015.09.016
  • Shalini V, Jayalekshmi A, and Helen A: Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats. Mol Immunol 66, 229–239, 2015. doi:10.1016/j.molimm.2015.03.004.
  • Willenberg I, Meschede AK, Gueler F, Jang MS, Shushakova N, et al.: Food polyphenols fail to cause a biologically relevant reduction of COX-2 activity. Plos One 10, e0139147, 2015. doi:10.1371/journal.pone.0139147.
  • Calder PC: Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients. Braz J Med Biol Res 36, 433–446, 2003.
  • Calder PC: Long-chain fatty acids and inflammation. Proc Nutr Soc 71, 284–289, 2012. doi:10.1017/S0029665112000067.
  • Lee JY, Sohn KH, Rhee SH, and Hwang D: Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 276, 16683–16689, 2001. doi:10.1074/jbc.M011695200.
  • Han YM, Jeong M, Park JM, Kim MY, Go EJ, et al.: The omega-3 polyunsaturated fatty acids prevented colitis-associated carcinogenesis through blocking dissociation of beta-catenin complex, inhibiting COX-2 through repressing NF-kappaB, and inducing 15-prostaglandin dehydrogenase. Oncotarget 7, 63583–63595, 2016. doi:10.18632/oncotarget.11544.
  • Vara-Messler M, Buccellati C, Pustina L, Folco G, Rovati GE, et al.: A potential role of PUFAs and COXIBs in cancer chemoprevention. Prostaglandins Other Lipid Mediat 120, 97–102, 2015. doi:10.1016/j.prostaglandins.2015.04.003.
  • Camuesco D, Comalada M, Concha A, Nieto A, Sierra S, et al.: Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, in rats with DSS-induced colitis. Clin Nutr 25, 466–476, 2006. doi:10.1016/j.clnu.2005.12.009.
  • Camuesco D, Galvez J, Nieto A, Comalada M, Rodriguez-Cabezas ME, et al.: Dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, attenuates colonic inflammation in rats with DSS-induced colitis. J Nutr 135, 687–694, 2005. doi: 135/4/687 [pii].
  • Zhang C, Yu H, Ni X, Shen S, and Das UN: Growth inhibitory effect of polyunsaturated fatty acids (PUFAs) on colon cancer cells via their growth inhibitory metabolites and fatty acid composition changes. PLoS One 10, e0123256, 2015. doi:10.1371/journal.pone.0123256.
  • Fini L, Piazzi G, Ceccarelli C, Daoud Y, Belluzzi A, et al.: Highly purified eicosapentaenoic acid as free fatty acids strongly suppresses polyps in Apc(Min/+) mice. Clin Cancer Res 16, 5703–5711, 2010. doi:10.1158/1078-0432.Ccr-10-1990.
  • Fradet V, Cheng I, Casey G, and Witte JS: Dietary omega-3 fatty acids, cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk. Clin Cancer Res 15, 2559–2566, 2009. doi:10.1158/1078-0432.CCR-08-2503.
  • Vara-Messler M, Pasqualini ME, Comba A, Silva R, Buccellati C, et al.: Increased dietary levels of alpha-linoleic acid inhibit mammary tumor growth and metastasis. Eur J Nutr 56, 509–519, 2017. doi:10.1007/s00394-015-1096-6.
  • Vecchini A, Ceccarelli V, Susta F, Caligiana P, Orvietani P, et al.: Dietary alpha-linolenic acid reduces COX-2 expression and induces apoptosis of hepatoma cells. J Lipid Res 45, 308–316, 2004. doi:10.1194/jlr.M300396-JLR200.
  • Schiessel DL, Yamazaki RK, Kryczyk M, Coelho I, Yamaguchi AA, et al.: Alpha-linolenic fatty acid supplementation decreases tumor growth and cachexia parameters in walker 256 tumor-bearing rats. Nutr Cancer 67, 839–846, 2015. doi:10.1080/01635581.2015.1043021.
  • Gullett NP, Ruhul Amin AR, Bayraktar S, Pezzuto JM, Shin DM, et al.: Cancer prevention with natural compounds. Semin Oncol 37, 258–281, 2010. doi:10.1053/j.seminoncol.2010.06.014.
  • Mencher SK and Wang LG: Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC Clin Pharmacol 5, 3, 2005. doi:10.1186/1472-6904-5-3.
  • Riboli E and Norat T: Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am J Clin Nutr 78, 559S–569S, 2003.
  • Eikenberry N and Smith C: Healthful eating: perceptions, motivations, barriers, and promoters in low-income Minnesota communities. J Am Diet Assoc 104, 1158–1161, 2004. doi:10.1016/j.jada.2004.04.023.
  • Cox BD, Whichelow MJ, and Prevost AT: Seasonal consumption of salad vegetables and fresh fruit in relation to the development of cardiovascular disease and cancer. Public Health Nutr 3, 19–29, 2000.
  • van't Veer P, Jansen MC, Klerk M, and Kok FJ: Fruits and vegetables in the prevention of cancer and cardiovascular disease. Public Health Nutr 3, 103–107, 2000.
  • Bingham SA, Day NE, Luben R, Ferrari P, Slimani N, et al.: Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet 361, 1496–1501, 2003. doi:10.1016/S0140-6736(03)13174-1.
  • Sandoval M, Font R, Manos M, Dicenta M, Quintana MJ, et al.: The role of vegetable and fruit consumption on survival and other habits following the diagnosis of oral cancer: a prospective study in Spain. Int J Oral Maxillofacial Surg 38, 31–39, 2009. doi:10.1016/j.ijom.2008.09.004.
  • Pavia M, Pileggi C, Nobile CGA, and Angelillo IF: Association between fruit and vegetable consumption and oral cancer: a meta-analysis of observational studies. Am J Clin Nutr 83, 1126–1134, 2006.
  • Michels KB, Giovannucci E, Chan AT, Singhania R, Fuchs CS, et al.: Fruit and vegetable consumption and colorectal adenomas in the nurses' health study. Cancer Res 66, 3942–3953, 2006. doi:10.1158/0008-5472.Can-05-3637.
  • Malongane F, McGaw LJ, and Mudau FN: The synergistic potential of various teas, herbs and therapeutic drugs in health improvement: a review. J Sci Food Agric 97, 4679–4689, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.