184
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Inhibition of mTOR/S6K1/4E-BP1 Signaling by Nutraceutical SIRT1 Modulators

&
Pages 490-501 | Received 26 Jul 2017, Accepted 20 Dec 2017, Published online: 14 Mar 2018

References

  • Zarogoulidis P, Lampaki S, Turner JF, Huang H, Kakolyris S, Syrigos K, et al.: mTOR pathway: A current, up-to-date mini-review (Review). Oncol Lett 8, 2367–2370, 2014.
  • Baretić D and Williams RL: The structural basis for mTOR function. Semin Cell Dev Biol 36, 91–101, 2014. doi:10.1016/j.semcdb.2014.09.024.
  • Dazert E and Hall MN: mTOR signaling in disease. Curr Opin Cell Biol 23, 744–55, 2011. Review doi:10.1016/j.ceb.2011.09.003.
  • Zoncu R, Efeyan A, and Sabatini DM: mTOR: From growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12, 21–35, 2011. Review doi:10.1038/nrm3025.
  • Tsang CK, Qi H, Liu LF, and Zheng XF: Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 12, 112–24, 2007. Review.
  • Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, and Jaworski J: Molecular neurobiology of mTOR. Neuroscience 341, 112–153, 2017. Review. doi:10.1016/j.neuroscience.2016.11.017.
  • Guertin DA and Sabatini DM: Defining the role of mTOR in cancer. Cancer Cell 12, 9–22, 2007.
  • Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al.: DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–86, 2009. doi:10.1016/j.cell.2009.03.046.
  • Laplante M and Sabatini DM: mTOR signaling at a glance. J Cell Sci 122, 3589–94, 2009. Review. doi:10.1242/jcs.051011.
  • Oh WJ and Jacinto E: mTOR complex 2 signaling and functions. Cell Cycle 10, 2305–16, 2011.
  • Fingar DC, Salama S, Tsou C, Harlow E, and Blenis J: Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16, 1472–87, 2002.
  • Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, et al.: The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278, 15461–4, 2003.
  • Fenton TR and Gout IT: Functions and regulation of the 70kDa ribosomal S6 kinases. Int J Biochem Cell Biol 43, 47–59, 2011. Review. doi:10.1016/j.biocel.2010.09.018.
  • Dufner A and Thomas G: Ribosomal S6 kinase signaling and the control of translation. Experimental Cell Research 253, 100–109, 1999.
  • Avruch J, Belham C, Weng Q, Hara K, and Yonezawa K: The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. ProgMolSubcell Biol 26, 115–54, 2001. Review.
  • Keshwani MM, von Daake S, Newton AC, Harris TK, and Taylor SS: Hydrophobic motif phosphorylation is not required for activation loop phosphorylation of p70 ribosomal protein S6 kinase 1 (S6K1). J Biol Chem 286, 23552–8, 2011. doi:10.1074/jbc.M111.258004.
  • Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, et al.: Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–4, 2009. doi:10.1126/science.1177221.
  • Ming XF, Montani JP, and Yang Z: Perspectives of targeting mTORC1–S6K1 in cardiovascular aging Frontiers in physiology. 5, 1–11, 2012. Review doi:10.3389/fphys.2012.00005.
  • Dann SG, Selvaraj A, and Thomas G: mTORComplex1-S6K1 signaling: At the crossroads of obesity, diabetes and cancer. TrendsMol 13, 252–259, 2007.
  • Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, et al.: eIF4E/4E-BP Ratio Predicts the Efficacy of mTOR Targeted Therapies. Cancer Research 72, 6468–6476, 2012. doi:10.1158/0008-5472.CAN-12-2395.
  • Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, and Hay N: 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12, 502–13, 1998.
  • Schalm SS, Fingar DC, Sabatini DM, and Blenis J: TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol 13, 797–806, 2003.
  • Zhou H and Huang S: mTOR signaling in cancer cell motility and tumor metastasis. Crit Rev Eukaryot Gene Expr 20, 1–16, 2010. Review.
  • Beauchamp EM and Platanias LC: The evolution of the TOR pathway and its role in cancer. Oncogene 32, 3923–32, 2013. doi:10.1038/onc.2012.567. Review.
  • Yamnik RL, Digilova A, Davis DC, Brodt ZN, Murphy CJ, and Holz MK: S6 kinase 1 regulates estrogen receptor alpha in control of breast cancer cell proliferation. J Biol Chem 284, 6361–9, 2009. doi:10.1074/jbc.M807532200.
  • Ismail HM: Overexpression of s6 kinase 1 in brain tumours is associated with induction of hypoxia-responsive genes and predicts patients' survival. J Oncol 2012, 416927, 2012. doi:10.1155/2012/416927.
  • Rojo F, Najera L, Lirola J, Jiménez J, Guzmán M, Sabadell MD, et al.: 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 13, 81–9, 2007.
  • She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, et al.: 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18, 39–51, 2010. doi:10.1016/j.ccr.2010.05.023.
  • Ruggero D, Montanaro L, Ma L, Xu W, Londei P, et al.: The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10, 484–6, 2004.
  • Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, et al.: Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–7, 2004.
  • Hay N and Sonenberg N: Upstream and downstream of mTOR. Genes Dev 18, 1926–45, 2004. Review.
  • Neuhaus P, Klupp J, and Langrehr JM: mTOR inhibitors: An overview. Liver Transpl 7, 473–84, 2001.
  • Guertin DA and Sabatini DM: The pharmacology of mTOR inhibition. Sci Signaling 2, pe24, 2009. doi:10.1126/scisignal.267pe24.
  • Tan HK, Moad AI, and Tan ML: The mTORsignalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals. Asian Pac J Cancer Prev 15, 6463–75, 2014.
  • Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al.: Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11, 1457–66, 2003.
  • Vilar E, Perez-Garcia J, and Tabernero J: Pushing the envelope in the mTOR pathway: The second generation of inhibitors. Mol Cancer Ther 10, 395–403, 2011. Review doi:10.1158/1535-7163.MCT-10-0905.
  • Naiman S and Cohen HY: The contentious history of sirtuin debates. Rambam Maimonides Med Journal 3, e0022, 2012. doi:10.5041/RMMJ.10093.
  • Houtkooper RH, Pirinen E, and Auwerx J: Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13, 225–38, 2012. doi:10.1038/nrm3293.
  • Chang HC and Guarente L: SIRT1 and other sirtuins in metabolism. Trends EndocrinolMetab 25, 138–45, 2014. doi:10.1016/j.tem.2013.12.001.
  • Davenport AM, Huber FM, and Hoelz A: Structural and functional analysis of human SIRT1. J Mol Biol 426, 526–41, 2014. doi:10.1016/j.jmb.2013.10.009.
  • Yakamoto H, Schoonjans L, and Auwerx J: Sirtuin functions in health and disease. MolEndocrinol 21, 1745–55, 2007.
  • Kwon HS and Ott M: The ups and downs of SIRT1. Trends Biochem Sci 33, 517–25, 2008. doi:10.1016/j.tibs.2008.08.001.
  • Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, et al.: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1050–60, 2009. doi:10.1038/nature07813.
  • Narala SR, Allsopp RC, Wells TB, Zhang G, Prasad P, Coussens MJ, et al.: SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. MolBiol Cell 19, 1210–9, 2008. doi:10.1091/mbc.E07-09-0965.
  • Lan F, Cacicedo JM, Ruderman N, and Ido Y: SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283, 27628–35, 2008. doi:10.1074/jbc.M805711200.
  • Hardie DG: AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. CurrOpin Cell Biol 33, 1–7, 2015. doi:10.1016/j.ceb.2014.09.004.
  • Shirwany NA and Zou MH: AMPK: A cellular metabolic and redox sensor. A minireview. Front Biosci 19, 447–74, 2014. Review.
  • Sun Y, Li J, Xiao N, Wang M, Kou J, Qi L, et al.: Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1. Pharmacol Res 89, 19–28, 2014. doi:10.1016/j.phrs.2014.07.006.
  • Jeong HW, Cho SY, Kim SY, Shin ES, Kim JM, et al.: Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats. PLoS One 7, 2012. doi:10.1371/journal.pone.0040073.
  • Zhuo L, Fu B, Bai X, Zhang B, Wu L, et al.: NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway. Cell PhysiolBiochem 27, 681–90, 2011. doi:10.1159/000330077.
  • Tillu DV, Melemedjian OK, Asiedu MN, Qu N, De Felice M, Dussor G, et al.: Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol Pain 8, 5, 2012. doi:10.1186/1744-8069-8-5.
  • Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, et al.: A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling pathway. Genes Cells 8, 65–79, 2003.
  • Ghosh HS, McBurney M, and Robbins PD: SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5, e9199, 2010. doi:10.1371/journal.pone.0009199.
  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, et al.: AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214–26, 2008. doi:10.1016/j.molcel.2008.03.003.
  • Kelly G: A review of the Sirtuin system, its Clinical Implications, and the Potential Role of Dietary Activators: Part 1. Altern Med Rev 15, 245–263, 2010.
  • Kucińska M, Piotrowska H, and Murias M: Sirtuins–modulation of their activity as a novel therapeutic target. Pol MerkurLekarski 28, 231–5, 2010.
  • Sauve AA, Wolberger C, Schramm VL, and Boeke JD: The biochemistry of sirtuins. Annu Rev Biochem 435–465, 2006.
  • Giovannini L and Bianchi S: Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect. Nutrition 34, 82–96, 2017. doi:10.1016/j.nut.2016.09.008.
  • Wang LM, Wang YJ, Cui M, Luo WJ, Wang XJ, et al.: A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia. Eur J Neurosci 37(10), 1669–81, 2013 May. doi:10.1111/ejn.12162.
  • Ganesan R, Hos NJ, Gutierrez S, Fischer J, Stepek JM, et al.: Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoSPathog 13, e1006227, 2017. doi:10.1371/journal.ppat.1006227.
  • Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, et al.: AMPK and SIRT1: A long-standing partnership? Am J PhysiolEndocrinolMetab 298, E751–60, 2010. Review doi:10.1152/ajpendo.00745.2009.
  • Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, et al.: Novel insights of dietary polyphenols and obesity. J NutrBiochem 25, 1–18, 2014. doi:10.1016/j.jnutbio.2013.09.001.
  • Chi L, Peng L, Pan N, Hu X, and Zhang Y: The anti-atherogenic effects of berberine on foam cell formation are mediated through the upregulation of sirtuin 1. Int J Mol Med 34, 1087–93, 2014. doi:10.3892/ijmm.2014.1868.
  • Zhu X, Guo X, Mao G, Gao Z, Wang H, et al.: Hepatoprotection of berberine against hydrogen peroxide-induced apoptosis by upregulation of Sirtuin 1. Phytother Res 27, 417–21, 2013. doi:10.1002/ptr.4728.
  • Gomes AP, Duarte FV, Nunes P, Hubbard BP, Teodoro JS, et al.: Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. BiochimBiophysActa 1822, 185–95, 2012. doi:10.1016/j.bbadis.2011.10.008.
  • Samuel SM, Thirunavukkarasu M, Penumathsa SV, Paul D, and Maulik N: Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears toward survival and longevity. J Agric Food Chem 56, 9692–8, 2008. doi:10.1021/jf802050h.
  • Mukherjee S, Lekli I, Gurusamy N, Bertelli AA, and Das DK: Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol. Free RadicBiol Med 46, 573–8, 2009. doi:10.1016/j.freeradbiomed.2008.11.005.
  • Bruckbauer A and Zemel MB: Synergistic effects of polyphenols and methylxanthines with Leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS One 2014. doi:10.1371/journal.pone.0089166.
  • Chao HM, Lin DE, Chang Y, Hsu WM, Lee SM, et al.: Ferulic acid, but not tetramethylpyrazine, significantly attenuates retinal ischemia/reperfusion-induced alterations by acting as a hydroxyl radical scavenger. J OculPharmacol Ther 24, 461–72, 2008. doi:10.1089/jop.2008.0005.
  • Chao HM, Chen YH, Liu JH, Hsu WM, Lee SM, et al.: Iron-generated hydroxyl radicals kill retinal cells in vivo: effect of ferulic acid. Hum Exp Toxicol 27, 327–39, 2008. doi:10.1089/jop.2008.0005.
  • Li GL, Wang JJ, Wang JZ, Liu YY, and Jin Y: Effect of ferulic acid on the proliferation of nerve cells of retinas in vitro. Zhonghua Yan KeZaZhi 39, 650–4, 2003.
  • Jiménez-Flores LM, López-Briones S, Macías-Cervantes MH, Ramírez-Emiliano J, and Pérez-Vázquez V: A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules 19, 8289–302, 2014. doi:10.3390/molecules19068289.
  • Sun Q, Jia N, Wang W, Jin H, Xu J, et al.: Activation of SIRT1 by curcumin blocks the neurotoxicity of amyloid-β25-35 in rat cortical neurons. BiochemBiophys Res Commun 448, 89–94, 2014. doi:10.1016/j.bbrc.2014.04.066.
  • Liu P, Zou D, Yi L, Chen M, Chen M, et al.: Quercetin ameliorates hypobaric hypoxia-induced memory impairment through mitochondrial and neuron function adaptation via the PGC-1α pathway. Restor Neurol Neurosci 33, 143–57, 2015. doi:10.3233/RNN-140446.
  • Dong J, Zhang X, Zhang L, Bian HX, Xu N, et al.: Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1. J Lipid Res 55, 363–74, 2014. doi:10.1194/jlr.M038786.
  • Suchankova G, Nelson LE, Gerhart-Hines Z, Kelly M, Gauthier MS, et al.: Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. BiochemBiophys Res Commun 378, 836–41, 2009. doi:10.1016/j.bbrc.2008.11.130.
  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, et al.: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196, 2003.
  • Gambini J, Inglés M, Olaso G, Lopez-Grueso R, Bonet-Costa V, et al.: Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid Med Cell Longev 2015, 837042, 2015. doi:10.1155/2015/837042.
  • Kawashima M, Ozawa Y, Shinmura K, Inaba T, Nakamura S, et al.: Calorie restriction (CR) and CR mimetics for the prevention and treatment of age-related eye disorders. ExpGerontol 48, 1096–100, 2013. doi:10.1016/j.exger.2013.04.002.
  • Kalt W, Hanneken A, Milbury P, and Tremblay F: Recent research on polyphenolics in vision and eye health. J Agric Food Chem 58, 4001–7, 2010. doi:10.1021/jf903038r.
  • Park D, Jeong H, Lee MN, Koh A, Kwon O, et al.: Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci Rep 6, 21772, 2016. doi:10.1038/srep21772.
  • Hasima N and Ozpolat B: Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 5, 2014. doi:10.1038/cddis.2014.467. Review.
  • Nemec MJ, Kim H, Marciante AB, Barnes RC, Hendrick ED, et al.: Polyphenolics from mango (Mangiferaindica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice. J NutrBiochem 41, 12–19, 2017. doi:10.1016/j.jnutbio.2016.11.005.
  • Rigacci S, Miceli C, Nediani C, Berti A, Cascella R, et al.: Oleuropeinaglycone induces autophagy via the AMPK/mTORsignalling pathway: A mechanistic insight. Oncotarget 6, 35344–57, 2015. doi:10.18632/oncotarget.6119.
  • Wee LH, Morad NA, Aan GJ, Makpol S, Wan Ngah WZ, et al.: Mechanism of Chemoprevention against Colon Cancer Cells Using Combined Gelam Honey and Ginger Extract via mTOR and Wnt/β-catenin Pathways. Asian Pac J Cancer Prev 16, 6549–56, 2015.
  • Cerella C, Gaigneaux A, Dicato M, and Diederich M: Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming. Cancer Lett 356, 251–62, 2015. doi:10.1016/j.canlet.2014.02.008. Review.
  • Adhami VM, Syed DN, Khan N, and Mukhtar H: Dietary flavonoid fisetin: A novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. BiochemPharmacol 84, 1277–81, 2012. doi:10.1016/j.bcp.2012.07.012. Review.
  • Chen X, Dong XS, Gao HY, Jiang YF, Jin YL, et al.: Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep 13, 689–96, 2016. doi:10.3892/mmr.2015.4600.
  • Hong S, Zhao B, Lombard DB, Fingar DC, and Inoki K: Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem 289, 13132–41, 2014. doi:10.1074/jbc.M113.520734. PMC4036325.
  • Ghosh HS, McBurney M, and Robbins PD: SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5, e9199, 2010. doi:10.1371/journal.pone.0009199. PMC2821410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.