475
Views
25
CrossRef citations to date
0
Altmetric
Review Article

Biological and Immunological Aspects of Iron Deficiency Anemia in Cancer Development: A Narrative Review

, , &
Pages 546-556 | Received 17 Oct 2017, Accepted 16 Mar 2018, Published online: 26 Apr 2018

References

  • WHO C: Worldwide prevalence of anaemia 1993–2005. WHO global database on anaemia 2008.
  • McLean E, Cogswell M, Egli I, Wojdyla D, and de Benoist B: Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993–2005. Public Health Nutr 12, 444–454, 2009. doi:10.1017/s1368980008002401.
  • Kassebaum NJ, Jasrasaria R, Naghavi M, Wulf SK, Johns N, et al.: A systematic analysis of global anemia burden from 1990 to 2010. Blood 123, 615–624, 2014.
  • Organization WH: Iron deficiency anaemia: assessment, prevention and control: a guide for programme managers. 2001.
  • Camaschella C: Iron-deficiency anemia. N Engl J Med 372, 1832–1843, 2015. doi:10.1056/NEJMra1401038.
  • Lopez A, Cacoub P, Macdougall IC, and Peyrin-Biroulet L: Iron deficiency anaemia. Lancet 2015. doi:10.1016/s0140-6736(15)60865-0.
  • Balarajan Y, Ramakrishnan U, Özaltin E, Shankar AH, and Subramanian S: Anaemia in low-income and middle-income countries. The Lancet 378, 2123–2135, 2012.
  • Chmielewska A, Dziechciarz P, Gieruszczak-Bialek D, Horvath A, Piescik-Lech M, et al.: Effects of prenatal and/or postnatal supplementation with iron, PUFA or folic acid on neurodevelopment: update. Br J Nutr 1–6, 2016. doi:10.1017/s0007114514004243.
  • Christian P: Micronutrients, birth weight, and survival. Annu Rev Nutr 30, 83–104, 2010. doi:10.1146/annurev.nutr.012809.104813.
  • Beard JL and Connor JR: Iron status and neural functioning. Annu Rev Nutr 23, 41–58, 2003. doi:10.1146/annurev.nutr.23.020102.075739.
  • McClung JP and Murray-Kolb LE: Iron nutrition and premenopausal women: effects of poor iron status on physical and neuropsychological performance. Annu Rev Nutr 33, 271–288, 2013. doi:10.1146/annurev-nutr-071812-161205.
  • Enjuanes C, Klip IT, Bruguera J, Cladellas M, Ponikowski P, et al.: Iron deficiency and health-related quality of life in chronic heart failure: results from a multicenter European study. Int J Cardiol 174, 268–275, 2014.
  • Gilreath JA, Stenehjem DD, and Rodgers GM: Diagnosis and treatment of cancer‐related anemia. Am J Hematol 89, 203–212, 2014.
  • Fishbane S, Pollack S, Feldman HI, and Joffe MM: Iron indices in chronic kidney disease in the National Health and Nutritional Examination Survey 1988–2004. Clin J Am Soc Nephrol 4, 57–61, 2009.
  • Bager P, Befrits R, Wikman O, Lindgren S, Moum B, et al.: The prevalence of anemia and iron deficiency in IBD outpatients in Scandinavia. Scand J Gastroenterol 46, 304–309, 2011.
  • Safaralizadeh R, Kardar G, Pourpak Z, Moin M, Zare A, et al.: Serum concentration of selenium in healthy individuals living in Tehran. Nutr J 4, 1–4, 2005.
  • Safaralizadeh R, Nourizadeh M, Zare A, Kardar GA, and Pourpak Z: Influence of selenium on mast cell mediator release. Biol Trace Elem Res 154, 299–303, 2013.
  • Zare A, Saremi A, Hajhashemi M, Kardar GA, Moazzeni SM, et al.: Correlation between serum zinc levels and successful immunotherapy in recurrent spontaneous abortion patients. J Hum Reprod Sci 6, 147–51, 2013. doi:10.4103/0974-1208.117170.
  • Muñoz C, Rios E, Olivos J, Brunser O, and Olivares M: Iron, copper and immunocompetence. Br J Nutr 98, S24–S28, 2007.
  • Liu L and Huang M: Essential role of the iron-sulfur cluster binding domain of the primase regulatory subunit Pri2 in DNA replication initiation. Protein Cell 6, 194–210, 2015. doi:10.1007/s13238-015-0134-8.
  • Dostal A, Lacroix C, Pham VT, Zimmermann MB, Del'homme C, et al.: Iron supplementation promotes gut microbiota metabolic activity but not colitis markers in human gut microbiota-associated rats. Br J Nutr 111, 2135–2145, 2014. doi:10.1017/s000711451400021x.
  • Bohnsack BL and Hirschi KK: Nutrient regulation of cell cycle progression. Annu Rev Nutr 24, 433–453, 2004.
  • Hung N, Shen C-C, Hu Y-W, Hu L-Y, Yeh C-M, et al.: Risk of cancer in patients with iron deficiency anemia: a nationwide population-based study. PloS one 10, e0119647, 2015.
  • Ahluwalia N, Sun J, Krause D, Mastro A, and Handte G: Immune function is impaired in iron-deficient, homebound, older women. Am J Clin Nutr 79, 516–521, 2004.
  • Kumar V and Choudhry VP: Iron deficiency and infection. Indian J Pediatr 77, 789–93, 2010. doi:10.1007/s12098-010-0120-3.
  • Nakama H, Zhang B, Fattah AA, and Zhang X: Colorectal cancer in iron deficiency anemia with a positive result on immunochemical fecal occult blood. Int J Colorectal dis 15, 271–274, 2000.
  • Richie JP, Kleinman W, Marina P, Abraham P, Wynder EL, et al.: Blood iron, glutathione, and micronutrient levels and the risk of oral cancer. Nutr Cancer 60, 474–482, 2008.
  • Ioannou GN, Rockey DC, Bryson CL, and Weiss NS: Iron deficiency and gastrointestinal malignancy: a population-based cohort study. Am J Med 113, 276–280, 2002.
  • James MW, Chen C-M, Goddard WP, Scott BB, and Goddard AF: Risk factors for gastrointestinal malignancy in patients with iron-deficiency anaemia. Eur J Gastroenterol Hepatol 17, 1197–1203, 2005.
  • Kurtoglu E, Ugur A, Baltaci AK, and Undar L: Effect of iron supplementation on oxidative stress and antioxidant status in iron-deficiency anemia. Biol Trace Elem Res 96, 117–123, 2003.
  • Akca H, Polat A, and Koca C: Determination of total oxidative stress and total antioxidant capacity before and after the treatment of iron-deficiency anemia. J Clin Lab Anal 27, 227–230, 2013. doi:10.1002/jcla.21589.
  • Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, et al.: Reactive oxygen species-mediated cardiac-reperfusion injury: mechanisms and therapies. Life Sci 2016. doi:10.1016/j.lfs.2016.09.013.
  • Harrison IP and Selemidis S: Understanding the biology of reactive oxygen species and their link to cancer: NADPH oxidases as novel pharmacological targets. Clin Exp Pharmacol Physiol 41, 533–542, 2014. doi:10.1111/1440-1681.12238.
  • Chen X, Song M, Zhang B, and Zhang Y: Reactive oxygen species regulate T cell immune response in the tumor microenvironment. Oxid Med Cell Longev 2016, 1580967, 2016. doi:10.1155/2016/1580967.
  • Sundaram RC, Selvaraj N, Vijayan G, Bobby Z, Hamide A, et al.: Increased plasma malondialdehyde and fructosamine in iron deficiency anemia: effect of treatment. Biomed Pharmacother 61, 682–685, 2007. doi:10.1016/j.biopha.2007.06.013.
  • Toblli J, Cao G, Oliveri L, and Angerosa M: Effects of iron deficiency anemia and its treatment with iron polymaltose complex in pregnant rats, their fetuses and placentas: oxidative stress markers and pregnancy outcome. Placenta 33, 81–87, 2012.
  • Inoue H, Kobayashi K, Ndong M, Yamamoto Y, Katsumata S, et al.: Activation of Nrf2/Keap1 signaling and autophagy induction against oxidative stress in heart in iron deficiency. Biosci Biotechnol Biochem 79, 1366–1368, 2015. doi:10.1080/09168451.2015.1018125.
  • El-Shimi MS, El-Farrash RA, Ismail EA, El-Safty A, Nada AS, et al.: Renal functional and structural integrity in infants with iron deficiency anemia: relation to oxidative stress and response to iron therapy. Pediatric Nephrology 30, 1835–1842, 2015.
  • Yoo JH, Maeng HY, Sun YK, Kim YA, Park DW, et al.: Oxidative status in iron-deficiency anemia. J Clin Lab Anal 23, 319–323, 2009. doi:10.1002/jcla.20335.
  • Wu Q and Ni X: ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets 16, 13–19, 2015.
  • Atamna H: Heme, iron, and the mitochondrial decay of ageing. Ageing Res Rev 3, 303–318, 2004.
  • Lill R, Dutkiewicz R, Freibert SA, Heidenreich T, Mascarenhas J, et al.: The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur J Cell Biol 94, 280–291, 2015. doi:10.1016/j.ejcb.2015.05.002.
  • Kaniak-Golik A and Skoneczna A: Mitochondria-nucleus network for genome stability. Free Radic Biol Med 82, 73–104, 2015. doi:10.1016/j.freeradbiomed.2015.01.013.
  • Hirst J and Roessler MM: Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. Biochim Biophys Acta 1857, 872–883, 2016. doi:10.1016/j.bbabio.2015.12.009.
  • Walter PB, Knutson MD, Paler-Martinez A, Lee S, Xu Y, et al.: Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats. Proc Nat Acad Sci 99, 2264–2269, 2002.
  • Atamna H, Killilea DW, Killilea AN, and Ames BN: Heme deficiency may be a factor in the mitochondrial and neuronal decay of aging. Proc Natl Acad Sci U S A 99, 14807–14812, 2002. doi:10.1073/pnas.192585799.
  • Wallace DC: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. The FASEB J 20, A1474, 2006.
  • Mettert EL and Kiley PJ: Fe-S proteins that regulate gene expression. Biochim Biophys Acta 1853, 1284–1293, 2015. doi:10.1016/j.bbamcr.2014.11.018.
  • Kimura S and Suzuki T: Iron-sulfur proteins responsible for RNA modifications. Biochim Biophys Acta 1853, 1272–1283, 2015. doi:10.1016/j.bbamcr.2014.12.010.
  • Paul VD and Lill R: Biogenesis of cytosolic and nuclear iron-sulfur proteins and their role in genome stability. Biochim Biophys Acta 1853, 1528–1539, 2015. doi:10.1016/j.bbamcr.2014.12.018.
  • Zhang C: Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell 5, 750–760, 2014.
  • Prá D, Franke SIR, Henriques JAP, and Fenech M: Iron and genome stability: an update. Mutat Res/Fundam Mol Mech Mutagen 733, 92–99, 2012.
  • White MF: Structure, function and evolution of the XPD family of iron-sulfur-containing 5′→ 3′ DNA helicases. Biochem Soc Trans 37, 547–551, 2009.
  • Rouault TA and Tong WH: Iron-sulfur cluster biogenesis and human disease. Trends Genet 24, 398–407, 2008. doi:10.1016/j.tig.2008.05.008.
  • Ye H and Rouault TA: Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry 49, 4945–4956, 2010. doi:10.1021/bi1004798.
  • Boyd ES, Thomas KM, Dai Y, Boyd JM, and Outten FW: Interplay between oxygen and Fe-S cluster biogenesis: insights from the Suf pathway. Biochemistry 53, 5834–5847, 2014. doi:10.1021/bi500488r.
  • Macheret M and Halazonetis TD: DNA replication stress as a hallmark of cancer. Annu Rev Pathol 10, 425–448, 2015. doi:10.1146/annurev-pathol-012414-040424.
  • Aslan M, Horoz M, Kocyigit A, Ozgonül S, Celik H, et al.: Lymphocyte DNA damage and oxidative stress in patients with iron deficiency anemia. Mutat Res/Fundam Mol Mech Mutagen 601, 144–149, 2006.
  • Khabour OF, Soudah OA, and Aaysh MH: Genotoxicity assessment in iron deficiency anemia patients using sister chromatid exchanges and chromosomal aberrations assays. Mutat Res 750, 72–6, 2013. doi:10.1016/j.mrgentox.2012.09.006.
  • Prá D, Bortoluzzi A, Müller LL, Hermes L, Horta JA, et al.: Iron intake, red cell indicators of iron status, and DNA damage in young subjects. Nutrition 27, 293–297, 2011.
  • Díaz-Castro J, Alférez MJ, López-Aliaga I, Nestares T, Granados S, et al.: Influence of nutritional iron deficiency anemia on DNA stability and lipid peroxidation in rats. Nutrition 24, 1167–1173, 2008.
  • Koury MJ and Ponka P: New insights into erythropoiesis: the roles of folate, vitamin B12, and iron. Annu Rev Nutr 24, 105–131, 2004.
  • Remacha AF, Wright I, Fernandez-Jimenez MC, Toxqui L, Blanco-Rojo R, et al.: Vitamin B12 and folate levels increase during treatment of iron deficiency anaemia in young adult woman. Int J Lab Hematol 37, 641–648, 2015. doi:10.1111/ijlh.12378.
  • Wang T-C, Song Y-S, Wang H, Zhang J, Yu S-F, et al.: Oxidative DNA damage and global DNA hypomethylation are related to folate deficiency in chromate manufacturing workers. J Hazard Mater 213, 440–446, 2012.
  • Geng Y, Gao R, Chen X, Liu X, Liao X, et al.: Folate deficiency impairs decidualization and alters methylation patterns of the genome in mice. Mol Hum Reprod gav045, 2015.
  • Duthie SJ, Narayanan S, Blum S, Pirie L, and Brand GM: Folate deficiency in vitro induces uracil misincorporation and DNA hypomethylation and inhibits DNA excision repair in immortalized normal human colon epithelial cells. Nutr Cancer 37, 245–251, 2000. doi:10.1207/s15327914nc372_18.
  • Iwakawa HO and Tomari Y: The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol 25, 651–665, 2015. doi:10.1016/j.tcb.2015.07.011.
  • Mansoori B, Mohammadi A, Shirjang S, and Baradaran B: Micro-RNAs: The new potential biomarkers in cancer diagnosis, prognosis and cancer therapy. Cell Mol Biol (Noisy-le-grand) 61, 1–10, 2015.
  • Pauley KM and Chan EK: MicroRNAs and their emerging roles in immunology. Ann N Y Acad Sci 1143, 226–239, 2008. doi:10.1196/annals.1443.009.
  • O'Connell RM, Rao DS, and Baltimore D: MicroRNA regulation of inflammatory responses. Annu Rev Immunol 30, 295–312, 2012.
  • Wang J, Yu F, Jia X, Iwanowycz S, Wang Y, et al.: MicroRNA‐155 deficiency enhances the recruitment and functions of myeloid‐derived suppressor cells in tumor microenvironment and promotes solid tumor growth. Int J Cancer 136, E602–E613, 2015.
  • Davis M and Clarke S: Influence of microRNA on the maintenance of human iron metabolism. Nutrients 5, 2611–2628, 2013.
  • Weitz SH, Gong M, Barr I, Weiss S, and Guo F: Processing of microRNA primary transcripts requires heme in mammalian cells. Proc Natl Acad Sci U S A 111, 1861–1866, 2014. doi:10.1073/pnas.1309915111.
  • Li Y, Lin L, Li Z, Ye X, Xiong K, et al.: Iron homeostasis regulates the activity of the microRNA pathway through poly(C)-binding protein 2. Cell Metab 15, 895–904, 2012. doi:10.1016/j.cmet.2012.04.021.
  • Nallamshetty S, Chan SY, and Loscalzo J: Hypoxia: A master regulator of microRNA biogenesis and activity. Free Radical Biol Med 64, 20–30, 2013. doi:https://doi.org/10.1016/j.freeradbiomed.2013.05.022.
  • Bao B, S Azmi A, Li Y, Ahmad A, Ali S, et al.: Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Therapy 9, 22–35, 2014.
  • Devlin C, Greco S, Martelli F, and Ivan M: miR-210: more than a silent player in hypoxia. IUBMB Life 63, 94–100, 2011. doi:10.1002/iub.427.
  • Crosby ME, Kulshreshtha R, Ivan M, and Glazer PM: MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Res 69, 1221–1229, 2009.
  • Akao Y, Nakagawa Y, and Naoe T: let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. Biol Pharm Bull 29, 903–906, 2006.
  • Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, et al.: Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64, 3753–3756, 2004. doi:10.1158/0008-5472.can-04-0637.
  • Yang Q, Jie Z, Cao H, Greenlee AR, Yang C, et al.: Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis 32, 713–722, 2011. doi:10.1093/carcin/bgr035.
  • Chang CJ, Hsu CC, Chang CH, Tsai LL, Chang YC, et al.: Let-7d functions as novel regulator of epithelial-mesenchymal transition and chemoresistant property in oral cancer. Oncol Rep 26, 1003–1010, 2011. doi:10.3892/or.2011.1360.
  • Wang Z, Liu Y, Han N, Chen X, Yu W, et al.: Profiles of oxidative stress-related microRNA and mRNA expression in auditory cells. Brain Res 1346, 14–25, 2010. doi:10.1016/j.brainres.2010.05.059.
  • Silván U, Díez-Torre A, Bonilla Z, Moreno P, Díaz-Núñez M, et al.: Vasculogenesis and angiogenesis in nonseminomatous testicular germ cell tumors. Urol Oncol: Semin Orig Investig 33, 268.e17–268.e28, 2015. doi:https://doi.org/10.1016/j.urolonc.2015.01.005.
  • Lee SH, Jeong D, Han YS, and Baek MJ: Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann Surg Treat Res 89, 1–8, 2015. doi:10.4174/astr.2015.89.1.1.
  • Esser JS, Rahner S, Deckler M, Bode C, Patterson C, et al.: Fibroblast growth factor signaling pathway in endothelial cells is activated by BMPER to promote angiogenesis. Arterioscler Thromb Vasc Biol 35, 358–367, 2015. doi:10.1161/atvbaha.114.304345.
  • Bornstein P: Thrombospondins function as regulators of angiogenesis. J Cell Commun Signal 3, 189–200, 2009. doi:10.1007/s12079-009-0060-8.
  • Jian J, Yang Q, Dai J, Eckard J, Axelrod D, et al.: Effects of iron deficiency and iron overload on angiogenesis and oxidative stress—a potential dual role for iron in breast cancer. Free Radical Biol Med 50, 841–847, 2011.
  • Fraga A, Ribeiro R, Príncipe P, Lopes C, and Medeiros R: Hypoxia and prostate cancer aggressiveness: a tale with many endings. Clinical Genitourinary Cancer 13, 295–301, 2015. doi:https://doi.org/10.1016/j.clgc.2015.03.006.
  • Huang X: Does iron have a role in breast cancer? The Lancet Oncol 9, 803–807, 2008.
  • Xue X, Taylor M, Anderson E, Hao C, Qu A, et al.: Hypoxia-inducible factor-2α activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res 72, 2285–2293, 2012.
  • Jian J, Yang Q, Shao Y, Axelrod D, Smith J, et al.: A link between premenopausal iron deficiency and breast cancer malignancy. BMC Cancer 13, 307, 2013.
  • Cichon MA and Radisky DC: ROS-induced epithelial-mesenchymal transition in mammary epithelial cells is mediated by NF-kB-dependent activation of Snail. Oncotarget 5, 2827–2838, 2014. doi:10.18632/oncotarget.1940.
  • Radisky DC, Levy DD, Littlepage LE, Liu H, Nelson CM, et al.: Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127, 2005. doi:10.1038/nature03688.
  • Elmore S: Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495–516, 2007.
  • Garrido C, Galluzzi L, Brunet M, Puig P, Didelot C, et al.: Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13, 1423–1433, 2006.
  • Hill MM, Adrain C, Duriez PJ, Creagh EM, and Martin SJ: Analysis of the composition, assembly kinetics and activity of native Apaf‐1 apoptosomes. EMBO J 23, 2134–2145, 2004.
  • Fulda S and Debatin K: Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798–4811, 2006.
  • Cain K, Bratton SB, and Cohen GM: The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie 84, 203–214, 2002. doi:https://doi.org/10.1016/S0300-9084(02)01376-7.
  • Travaglini-Allocatelli C: Protein machineries involved in the attachment of heme to cytochrome c: protein structures and molecular mechanisms. Scientifica (Cairo) 2013, 505714, 2013. doi:10.1155/2013/505714.
  • Kim HJ, Khalimonchuk O, Smith PM, and Winge DR: Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Biochim Biophys Acta (BBA)-Mol Cell Res 1823, 1604–1616, 2012.
  • Longpre J and Loo G: Inhibition of deoxycholate-induced apoptosis in iron-depleted HCT-116 cells. Apoptosis 17, 70–78, 2012.
  • de Deungria M, Rao R, Wobken JD, Luciana M, Nelson CA, et al.: Perinatal iron deficiency decreases cytochrome c oxidase (CytOx) activity in selected regions of neonatal rat brain. Pediatr Res 48, 169–176, 2000. doi:10.1203/00006450-200008000-00009.
  • Payne CM, Holubec H, Bernstein C, Bernstein H, Dvorak K, et al.: Crypt-restricted loss and decreased protein expression of cytochrome C oxidase subunit I as potential hypothesis-driven biomarkers of colon cancer risk. Cancer Epidemiol Biomarkers Prev 14, 2066–2075, 2005. doi:10.1158/1055-9965.epi-05-0180.
  • Zhang X, Zhang W, Ma SF, Miasniakova G, Sergueeva A, et al.: Iron deficiency modifies gene expression variation induced by augmented hypoxia sensing. Blood Cells Mol Dis 52, 35–45, 2014. doi:10.1016/j.bcmd.2013.07.016.
  • Nebert DW and Russell DW: Clinical importance of the cytochromes P450. Lancet 360, 1155–1162, 2002. doi:10.1016/s0140-6736(02)11203-7.
  • Sheweita SA: Drug-metabolizing enzymes: mechanisms and functions. Curr Drug Metab 1, 107–132, 2000.
  • Oates PS and West AR: Heme in intestinal epithelial cell turnover, differentiation, detoxification, inflammation, carcinogenesis, absorption and motility. World J Gastroenterol: WJG 12, 4281–4295, 2006.
  • McLean KJ, Luciakova D, Belcher J, Tee KL, and Munro AW: Biological diversity of cytochrome P450 redox partner systems. Adv Exp Med Biol 851, 299–317, 2015. doi:10.1007/978-3-319-16009-2_11.
  • Dhur A, Galan P, and Hercberg S: Effects of different degrees of iron deficiency on cytochrome P450 complex and pentose phosphate pathway dehydrogenases in the rat. J Nutr 119, 40–47, 1989.
  • Rao NJ and Jagadeesan V: Effect of long term iron deficiency on the activities of hepatic and extra-hepatic drug metabolising enzymes in Fischer rats. Comp Biochem Physiol Part B: Biochem Mol Biol 110, 167–173, 1995.
  • Yang C, Li C, Li M, Tong X, Hu X, et al.: CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling. Exp Cell Res 331, 377–386, 2015.
  • Alam J and Cook JL: Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Des 9, 2499–2511, 2003.
  • Gozzelino R, Jeney V, and Soares MP: Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50, 323–354, 2010.
  • Clérigues V, Guillén MI, Castejón MA, Gomar F, Mirabet V, et al.: Heme oxygenase-1 mediates protective effects on inflammatory, catabolic and senescence responses induced by interleukin-1β in osteoarthritic osteoblasts. Biochem Pharmacol 83, 395–405, 2012.
  • Lai C and Loo G: Cellular iron depletion weakens induction of heme oxygenase-1 by cadmium. Int J Biochem Cell Biol 43, 88–97, 2011.
  • D'Ignazio L, Bandarra D, and Rocha S: NF-kappaB and HIF crosstalk in immune responses. Febs J 2015. doi:10.1111/febs.13578.
  • Kurpios-Piec D, Grosicka-Maciag E, Wozniak K, Kowalewski C, Kiernozek E, et al.: Thiram activates NF-kappaB and enhances ICAM-1 expression in human microvascular endothelial HMEC-1 cells. Pestic Biochem Physiol 118, 82–89, 2015. doi:10.1016/j.pestbp.2014.12.003.
  • Milstone DS, Ilyama M, Chen M, O'Donnell P, Davis VM, et al.: Differential role of an NF-kappaB transcriptional response element in endothelial versus intimal cell VCAM-1 expression. Circ Res 117, 166–177, 2015. doi:10.1161/circresaha.117.306666.
  • Kim HR, Shin da Y, and Chung KH: The role of NF-kappaB signaling pathway in polyhexamethylene guanidine phosphate induced inflammatory response in mouse macrophage RAW264.7 cells. Toxicol Lett 233, 148–155, 2015. doi:10.1016/j.toxlet.2015.01.005.
  • Brightbill HD, Jackman JK, Suto E, Kennedy H, Jones C, 3rd, et al.: Conditional deletion of NF-kappaB-Inducing Kinase (NIK) in adult mice disrupts mature B cell survival and activation. J Immunol 195, 953–964, 2015. doi:10.4049/jimmunol.1401514.
  • Ahn G, Park E, Park HJ, Jeon YJ, Lee J, et al.: The classical NFkappaB pathway is required for phloroglucinol-induced activation of murine lymphocytes. Biochim Biophys Acta 1800, 639–645, 2010. doi:10.1016/j.bbagen.2010.03.014.
  • Fluck K, Breves G, Fandrey J, and Winning S: Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis. Mucosal Immunol 2015. doi:10.1038/mi.2015.67.
  • Zhu F, Yue W, and Wang Y: The nuclear factor kappa B (NF-kappaB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells. Exp Cell Res 327, 256–263, 2014. doi:10.1016/j.yexcr.2014.04.018.
  • Gutierrez MG, Mishra BB, Jordao L, Elliott E, Anes E, et al.: NF-kappa B activation controls phagolysosome fusion-mediated killing of mycobacteria by macrophages. J Immunol 181, 2651–2663, 2008.
  • Wang L and Cherayil BJ: Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J Innate Immun 1, 455–464, 2009. doi:10.1159/000210016.
  • Paino IM, Miranda JC, Marzocchi-Machado CM, Cesarino EJ, de Castro FA, et al.: Phagocytosis, oxidative burst, and produced reactive species are affected by iron deficiency anemia and anemia of chronic diseases in elderly. Biol Trace Elem Res 129, 116–125, 2009. doi:10.1007/s12011-008-8303-8.
  • Winterbourn CC, Kettle AJ, and Hampton MB: Reactive oxygen species and neutrophil function. Annu Rev Biochem 2016.
  • Yamaguchi R, Kawata J, Yamamoto T, Ishimaru Y, Sakamoto A, et al.: Mechanism of interferon-gamma production by monocytes stimulated with myeloperoxidase and neutrophil extracellular traps. Blood Cells Mol Dis 55, 127–133, 2015. doi:10.1016/j.bcmd.2015.05.012.
  • Bergman M, Salman H, Pinchasi R, Straussberg R, Djaldetti M, et al.: Phagocytic capacity and apoptosis of peripheral blood cells from patients with iron deficiency anemia. Biomed Pharmacother 59, 307–311, 2005.
  • Kurtoglu E, Ugur A, Baltaci AK, Mogolkoc R, and Undar L: Activity of neutrophil NADPH oxidase in iron-deficient anemia. Biol Trace Elem Res 96, 109–115, 2003.
  • Anand RJ, Gribar SC, Li J, Kohler JW, Branca MF, et al.: Hypoxia causes an increase in phagocytosis by macrophages in a HIF-1alpha-dependent manner. J Leukoc Biol 82, 1257–1265, 2007. doi:10.1189/jlb.0307195.
  • Shirato K, Kizaki T, Sakurai T, Ogasawara JE, Ishibashi Y, et al.: Hypoxia-inducible factor-1alpha suppresses the expression of macrophage scavenger receptor 1. Pflugers Arch 459, 93–103, 2009. doi:10.1007/s00424-009-0702-y.
  • Moretta L, Montaldo E, Vacca P, Del Zotto G, Moretta F, et al.: Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol 164, 253–264, 2014. doi:10.1159/000365632.
  • Sarkar S, Germeraad WT, Rouschop KM, Steeghs EM, van Gelder M, et al.: Hypoxia induced impairment of NK cell cytotoxicity against multiple myeloma can be overcome by IL-2 activation of the NK cells. PLoS One 8, e64835, 2013. doi:10.1371/journal.pone.0064835.
  • Balsamo M, Manzini C, Pietra G, Raggi F, Blengio F, et al.: Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC. Eur J Immunol 43, 2756–2764, 2013. doi:10.1002/eji.201343448.
  • Schilling D, Tetzlaff F, Konrad S, Li W, and Multhoff G: A hypoxia-induced decrease of either MICA/B or Hsp70 on the membrane of tumor cells mediates immune escape from NK cells. Cell Stress Chaperones 20, 139–147, 2015. doi:10.1007/s12192-014-0532-5.
  • Baginska J, Viry E, Berchem G, Poli A, Noman MZ, et al.: Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc Natl Acad Sci U S A 110, 17450–17455, 2013. doi:10.1073/pnas.1304790110.
  • Bowlus CL: The role of iron in T cell development and autoimmunity. Autoimmun Rev 2, 73–78, 2003.
  • Kuvibidila SR and Porretta C: Iron deficiency and in vitro iron chelation reduce the expression of cluster of differentiation molecule (CD)28 but not CD3 receptors on murine thymocytes and spleen cells. Br J Nutr 90, 179–189, 2003.
  • Kuvibidila SR, Porretta C, Surendra Baliga B, and Leiva LE: Reduced thymocyte proliferation but not increased apoptosis as a possible cause of thymus atrophy in iron-deficient mice. Br J Nutr 86, 157–162, 2001.
  • Zimmermann MB: The influence of iron status on iodine utilization and thyroid function. Annu Rev Nutr 26, 367–389, 2006.
  • Kuvibidila SR, Kitchens D, and Baliga BS: In vivo and in vitro iron deficiency reduces protein kinase C activity and translocation in murine splenic and purified T cells. J Cell Biochem 74, 468–478, 1999.
  • Klecha AJ, Salgueiro J, Wald M, Boccio J, Zubillaga M, et al.: In vivo iron and zinc deficiency diminished T- and B-selective mitogen stimulation of murine lymphoid cells through protein kinase C-mediated mechanism. Biol Trace Elem Res 104, 173–183, 2005. doi:10.1385/bter:104:2:173.
  • Kuvibidila S and Warrier RP: Differential effects of iron deficiency and underfeeding on serum levels of interleukin-10, interleukin-12p40, and interferon-gamma in mice. Cytokine 26, 73–81, 2004.
  • Kuvibidila S, Yu L, Ode D, Velez M, Gardner R, et al.: Effects of iron deficiency on the secretion of interleukin-10 by mitogen-activated and non-activated murine spleen cells. J Cell Biochem 90, 278–286, 2003. doi:10.1002/jcb.10627.
  • Kuvibidila SR, Velez M, Gardner R, Penugonda K, Chandra LC, et al.: Iron deficiency reduces serum and in vitro secretion of interleukin-4 in mice independent of altered spleen cell proliferation. Nutr Res 32, 107–115, 2012. doi:10.1016/j.nutres.2011.12.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.