309
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Chemopreventive Potential of Cereal Polyphenols

, , , , &
Pages 913-927 | Received 05 Nov 2017, Accepted 14 Jun 2018, Published online: 01 Oct 2018

References

  • World Health Organisation (WHO). Cancer fact sheet. 2017. http://www.who.int/mediacentre/factsheets/fs297/en/
  • Lingwood RJ, Boyle P, Milburn A, Ngoma T, Arbuthnott J, et al.: The challenge of cancer control in Africa. Nat Rev Cancer 8, 398–403, 2008.
  • Xing YM and White PJ: Identification and function of antioxidants from oat greats and hulls. J Am Oil Chem Soc 74, 303–307, 1997. doi: 10.1007/s11746-997-0141-x
  • Wongjaikam S, Summart R, and Chewonarin T: Apoptosis induction in colon cancer cell lines and alteration of aberrant crypt foci in rat colon by purple rice (Oryza sativa L. var. glutinosa) extracts. Nutr Cancer 66, 690–699, 2014. doi: 10.1080/01635581.2014.899371
  • Suganyadevi P, Saravanakumar KM, and Mohandas S: The antiproliferative activity of 3-deoxyanthocyanins extracted from red sorghum (Sorghum bicolor) bran through P53-dependent and Bcl-2 gene expression in breast cancer cell line. Life Sci 92, 379–382, 2013. doi: 10.1016/j.lfs.2013.01.006
  • Bagchi D, Sen CK, Bagchi M, and Atalay M: Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry-Moscow 69, 75, 2004. doi: 10.1023/B:Biry.0000016355.19999.93
  • Evan GI and Vousden KH: Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348, 2001. doi: 10.1038/35077213
  • Menga V, Fares C, Troccoli A, Cattivelli L, and Baiano A: Effects of genotype, location and baking on the phenolic content and some antioxidant properties of cereal species. Int J Food Sci Techno 45, 7–16, 2010. doi: 10.1111/j.1365-2621.2009.02072.x
  • Masisi K, Beta T, and Moghadasian MH: Antioxidant properties of diverse cereal grains: a review on in vitro and in vivo studies. Food Chem 196, 90–97, 2016. doi: 10.1016/j.foodchem.2015.09.021
  • Malaguti M, Dinelli G, Leoncini E, Bregola V, Bosi S, et al.: Bioactive peptides in cereals and legumes: agronomical, biochemical and clinical aspects. Int J Mol Sci 15, 21120–21135, 2014. doi: 10.3390/ijms151121120
  • Wu L, Huang ZH, Qin PY, Yao Y, Meng XJ, et al.: Chemical Characterization of a Procyanidin-Rich Extract from Sorghum Bran and Its Effect on Oxidative Stress and Tumor Inhibition in Vivo. J Agric Food Chem 59, 8609–8615, 2011. doi: 10.1021/jf2015528
  • Chen CYO, Milbury PE, Collins FW, and Blumberg JB: Avenanthramides are bioavailable and have antioxidant activity in humans after acute consumption of an enriched mixture from oats. J Nutr 137, 1375–1382, 2007.
  • Wang LS, and Stoner GD: Anthocyanins and their role in cancer prevention. Cancer Lett 269, 281–290, 2008. doi: 10.1016/j.canlet.2008.05.020
  • Singh R, De S, and Belkheir A: Avena sativa (Oat), A Potential Neutraceutical and Therapeutic Agent: An Overview. Cr Rev Food Sci Nutr 53, 126–144, 2013. doi: 10.1080/10408398.2010.526725
  • Morton LW, Caccetta RA, Puddey IB, and Croft KD: Chemistry and biological effects of dietary phenolic compounds: Relevance to cardiovascular disease. Clin Exp Pharmacol Physiol 27, 152–159, 2000. doi: 10.1046/j.1440-1681.2000.03214.x
  • Tomas-Barberan FA and Espin JC: Phenolic compounds and related enzymes as determinants of quality in furits and vegetables. J Sci Food Agric 81, 853–876, 2001.
  • Waterman PG and Mole S: Anal Phenol Plant Metabol Great Britain: Blackwell Scientific Publication, 1994.
  • Giada MDLR: Food Phenolic compounds: main classes, sources and their antioxidant power. In: Oxidative Stress and Chronic Degenerative Diseases – A Role for Antioxidant. InTech, 2013, pp. 87–112. https://www.intechopen.com/books/oxidative-stress-and-chronic-degenerative-diseases-a-role-for-antioxidants/food-phenolic-compounds-main-classes-sources-and-their-antioxidant-power
  • Goufo P and Trindade H: Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, c-oryzanol, and phytic acid. Food Sci Nutr 2, 75–104, 2014. doi: 10.1002/fsn3.86
  • Zaupa M, Calani L, Del Rio D, Brighenti F, and Pellegrini N: Characterization of total antioxidant capacity and (poly)phenolic compounds of differently pigmented rice varieties and their changes during domestic cooking. Food Chem 187, 338–347, 2015. doi: 10.1016/j.foodchem.2015.04.055
  • Tanaka J, Nakamura S, Tsuruma K, Shimazawa M, Shimoda H, et al.: Purple rice (Oryza sativa L.) extract and its constituents inhibit VEGF-induced angiogenesis. Phytother Res 26, 214–222, 2012. doi: 10.1002/ptr.3533
  • Hyun JW and Chung HS: Cyanidin and malvidin from oryza sativa cv. Heugjinjubyeo mediate cytotoxicity against human monocytic leukemia cells by arrest of G(2)/M phase and induction of apoptosis. J Agric Food Chem 52, 2213–2217, 2004. doi: 10.1021/jf030370h
  • Hui C, Bin Y, Xiaoping Y, Long Y, Chunye C, et al.: Anticancer activities of an anthocyanin-rich extract from black rice against breast cancer cells in vitro and in vivo. Nutr Cancer 62, 1128–1136, 2010. doi: 10.1080/01635581.2010.494821
  • Sousa A, Araujo P, Azevedo J, Cruz L, Fernandes I, et al.: Antioxidant and antiproliferative properties of 3-deoxyanthocyanidins. Food Chem 192, 142–148, 2016. doi: 10.1016/j.foodchem.2015.06.108
  • Daiponmak W, Theerakulpisut P, Thanonkao P, Vanavichit A, and Prathepha P: Changes of anthocyanin cyanidin-3-glucoside content and antioxidant activity in Thai rice varieties under salinity stress. Science Asia 36, 286–291, 2010.
  • Jeong JB and Lee SH: Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells. Biochem Biophys Res Commun 430, 381–386, 2013. doi: 10.1016/j.bbrc.2012.11.018
  • Choi J, Jiang XJ, Jeong JB, and Lee SH: Anticancer activity of protocatechualdehyde in human breast cancer cells. J Med Food 17, 842–848, 2014. doi: 10.1089/jmf.2013.0159
  • Yang L, Browning JD, and Awika JM: Sorghum 3-Deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J Agric Food Chem 57, 1797–1804, 2009.
  • Awika JM, Yang LY, Browning JD, and Faraj A: Comparative antioxidant, antiproliferative and phase II enzyme inducing potential of sorghum (Sorghum bicolor) varieties. Lwt-Food Sci Technol 42, 1041–1046, 2009. doi: 10.1016/j.lwt.2009.02.003
  • Collins FW: Oat phenolics––avenanthramides, novel substituted n-cinnamoylanthranilate alkaloids from oat groats and hulls. J Agric Food Chem 37, 60–66, 1989. doi: 10.1021/jf00085a015
  • Wang D, Wise ML, Li F, and Dey M: Phytochemicals attenuating aberrant activation of beta-catenin in cancer cells. PLoS One 7, e50508, 2012. doi: 10.1371/journal.pone.0050508
  • Scarpa ES, Antonini E, Palma F, Mari M, and Ninfali P: Antiproliferative activity of vitexin-2-O-xyloside and avenanthramides on CaCo-2 and HepG2 cancer cells occurs through apoptosis induction and reduction of pro-survival mechanisms. Eur J Nutr 57, 1381–1395, 2017. doi: 10.1007/s00394-017-1418-y
  • Bratt K, Sunnerheim K, Bryngelsson S, Fagerlund A, Engman L, et al.: Avenanthramides in oats (Avena sativa L.) and structure-antioxidant activity relationships. J Agric Food Chem 51, 594–600, 2003. doi: 10.1021/jf020544f
  • Cai YZ, Mei S, Jie X, Luo Q, and Corke H: Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci 78, 2872–2888, 2006. doi: 10.1016/j.lfs.2005.11.004
  • Scalbert A and Williamson G: Dietary intake and bioavailability of polyphenols. J Nutr 130, 2073S–2085S, 2000.
  • Min B, Gu L, McClung AM, Bergman CJ and Chen M: Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chem 133, 715–722, 2012.
  • Pintha K, Yodkeeree S and Limtrakul P: Proanthocyanidin in red rice inhibits MDA-MB-231 breast cancer cell invasion via the expression control of invasive proteins. Biol Pharm Bull 38, 571–581, 2015. doi: 10.1248/bpb.b14-00719
  • Burdette A, Garner PL, Mayer EP, Hargrove JL, Hartle DK, et al.: Anti-inflammatory activity of select sorghum (Sorghum bicolor) Brans. J Med Food 13, 879–887, 2010. doi: 10.1089/jmf.2009.0147
  • Surh YJ: cancer chemoprevention with dietry phytochemicals. Nat Rev Cancer 3, 768–780, 2003.
  • Kamiloglu S, Capanoglu E, Grootaert C, and Van Camp J: Anthocyanin absorption and metabolism by human intestinal Caco-2 cells—a review. Int J Mol Sci 16, 21555–21574, 2015. doi: 10.3390/ijms160921555
  • Graefe EU, Wittig J, Mueller S, Riethling AK, Uehleke B, et al.: Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol 41, 492–499, 2001. doi: 10.1177/00912700122010366
  • McGhie TK and Walton MC: The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51, 702–713, 2007. doi: 10.1002/mnfr.200700092
  • Koenig RT, Dickman JR, Wise ML, and Ji LL: Avenanthramides are bioavailable and accumulate in hepatic, cardiac, and skeletal muscle tissue following oral gavage in rats. J Agric Food Chem 59, 6438–6443, 2011. doi: 10.1021/jf2002427
  • Chen CY, Milbury PE, Kwak HK, Collins FW, Samuel P, et al.: Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J Nutr 134, 1459–1466, 2004
  • Shoji T, Masumoto S, Moriichi N, Akiyama H, Kanda T, et al.: Apple procyanidin oligomers absorption in rats after oral administration: analysis of procyanidins in plasma using the porter method and high-performance liquid chromatography/tandem mass spectrometry. J Agric Food Chem 54, 884–892, 2006. doi: 10.1021/jf052260b
  • Lafay S and Gil-Izquierdo A: Bioavailability of phenolic acids. Phytochem Rev 7, 301, 2007. doi: 10.1007/s11101-007-9077-x
  • Chatthongpisut R, Schwartz SJ, and Yongsawatdigul J: Antioxidant activities and antiproliferative activity of Thai purple rice cooked by various methods on human colon cancer cells. Food Chem 188, 99–105, 2015. doi: 10.1016/j.foodchem.2015.04.074
  • Guo W, Nie L, Wu D, Wise ML, Collins FW, et al.: Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro. Nutr Cancer 62, 1007–1016, 2010. doi: 10.1080/01635581.2010.492090
  • Lee JR, Lee MH, Eo HJ, Park GH, Song HM, et al.: The contribution of activating transcription factor 3 to apoptosis of human colorectal cancer cells by protocatechualdehyde, a naturally occurring phenolic compound. Arc Biochem Biophys 564, 203–210, 2014. doi: 10.1016/j.abb.2014.10.005
  • Limtrakul P, Yodkeeree S, Pitchakarn P, and Punfa W: Suppression of inflammatory responses by black rice extract in RAW 264.7 macrophage cells via downregulation of NF-kB and AP-1 signaling pathways. Asian Pac J Cancer Prev 16, 4277–4283, 2015.
  • Gilmore TD: Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680–6684, 2006. doi: 10.1038/sj.onc.1209954
  • Mantovani A, Garlanda C, and Allavena P: Molecular pathways and targets in cancer-related inflammation. Ann Med 42, 161–170, 2010. doi: 10.3109/07853890903405753
  • Mantovani A, Allavena P, Sica A, and Balkwill F: Cancer-related inflammation. Nature 454, 436–444, 2008. doi: 10.1038/nature07205
  • Sur R, Nigam A, Grote D, Liebel F, and Southall MD: Avenanthramides, polyphenols from oats, exhibit anti-inflammatory and anti-itch activity. Arch Dermatol Res 300, 569–574, 2008. doi: 10.1007/s00403-008-0858-x
  • Shalini V, Bhaskar S, Kumar KS, Mohanlal S, Jayalekshmy A, et al.: Molecular mechanisms of anti-inflammatory action of the flavonoid, tricin from Njavara rice (Oryza sativa L.) in human peripheral blood mononuclear cells: possible role in the inflammatory signaling. Int Immunopharmacol 14, 32–38, 2012.
  • Niu Y, Gao B, Slavin M, Zhang X, Yang F, et al.: Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. LWT––Food Sci Technol 54, 521–527, 2013. doi: 10.1016/j.lwt.2013.06.018
  • Seo WD, Kim JY, Song Y-C, Cho J-H, Jang KC, et al.: Comparative analysis of physicochemicals and antioxidative properties in new red rice (Oryza sativa L. cv. Gunganghongmi). J Crop Sci Biotechnol 16, 63–68, 2013. doi: 10.1007/s12892-012-0057-3
  • Phutthaphadoong S, Yamada Y, Hirata A, Tomita H, Hara A, et al.: Chemopreventive effect of fermented brown rice and rice bran (FBRA) on the inflammation-related colorectal carcinogenesis in ApcMin/+ mice. Oncol Rep 23, 53–59, 2010.
  • Tan BL and Norhaizan ME: Scientific evidence of rice by-products for cancer prevention: chemopreventive properties of waste products from rice milling on carcinogenesis in vitro and in vivo. Biomed Res Int 2017, 9017902, 2017. doi: 10.1155/2017/9017902
  • Cai H, Al-Fayez M, Tunstall RG, Platton S, Greaves P, et al.: The rice bran constituent tricin potently inhibits cyclooxygenase enzymes and interferes with intestinal carcinogenesis in ApcMin mice. Mol Cancer Ther 4, 1287–1292, 2005. doi: 10.1158/1535-7163.MCT-05-0165
  • Oyama T, Yasui Y, Sugie S, Koketsu M, Watanabe K, et al.: Dietary Tricin suppresses inflammation-related colon carcinogenesis in Male Crj: CD-1 Mice. Cancer Prevent Res 2, 1031–1038, 2009. doi: 10.1158/1940-6207.Capr-09-0061
  • Nie L, Wise M, Peterson D, and Meydani M: Mechanism by which avenanthramide-c, a polyphenol of oats, blocks cell cycle progression in vascular smooth muscle cells. Free Radic Biol Med 41, 702–708, 2006. doi: 10.1016/j.freeradbiomed.2006.04.020
  • Guo W, Wise ML, Collins FW, and Meydani M: Avenanthramides, polyphenols from oats, inhibit IL-1beta-induced NF-kappaB activation in endothelial cells. Free Radic Biol Med 44, 415–429, 2008. doi: 10.1016/j.freeradbiomed.2007.10.036
  • Nie L, Wise ML, Peterson DM, and Meydani M: Avenanthramide, a polyphenol from oats, inhibits vascular smooth muscle cell proliferation and enhances nitric oxide production. Atherosclerosis 186, 260–266, 2006. doi: 10.1016/j.atherosclerosis.2005.07.027
  • Nguyen PH, Zhao BT, Lee JH, Kim YH, Min BS, et al.: Isolation of benzoic and cinnamic acid derivatives from the grains of Sorghum bicolor and their inhibition of lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. Food Chem 168, 512–519, 2015. doi: 10.1016/j.foodchem.2014.06.119
  • National Cancer Institute. Angiogenesis inhibitors. U.S. Department of Health and Human Services, 2011. https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/angiogenesis-inhibitors-fact-sheet
  • Millauer B, Shawver LK, Plate KH, Risaui W, and Ullrich A: Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579, 1994.
  • Uhlmann S, Friedrichs U, Eichler W, Hoffmann S, and Wiedemann P: Direct measurement of VEGF-induced nitric oxide production by choroidal endothelial cells. Microvas Res 62, 179–189, 2001. doi: 10.1006/mvre.2001.2334
  • Huang C, Li J, Song L, Zhang D, Tong Q, et al.: Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide-induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway. Cancer Res 66, 581–587, 2006. doi: 10.1158/0008-5472.CAN-05-1951
  • Rodrigo KA, Rawal Y, Renner RJ, Schwartz SJ, Tian Q, et al.: Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries. Nutr Cancer 54, 58–68, 2006. doi: 10.1207/s15327914nc5401_7
  • Asensi M, Ortega A, Mena S, Feddi F, and Estrela JM: Natural polyphenols in cancer therapy. Crit Rev Clin Lab Sci 48, 197–216, 2011. doi: 10.3109/10408363.2011.631268
  • Choi SP, Kim SP, Nam SH, and Friedman M: Antitumor effects of dietary black and brown rice brans in tumor-bearing mice: relationship to composition. Mol Nutr Food Res 57, 390–400, 2013. doi: 10.1002/mnfr.201200515
  • Brandstetter H, Grams F, Glitz D, Lang A, Huber R, et al.: The 1.8-A crystal structure of a matrix metalloproteinase 8-barbiturate inhibitor complex reveals a previously unobserved mechanism for collagenase substrate recognition. J Biol Chem 276, 17405–17412, 2001. doi: 10.1074/jbc.M007475200
  • Chen XY, Zhou J, Luo LP, Han B, Li F, et al.: Black rice anthocyanins suppress metastasis of breast cancer cells by targeting RAS/RAF/MAPK pathway. Biomed Res Int 2015, 414250, 2015. doi: 10.1155/2015/414250
  • Dhillon AS, Hagan S, Rath O, and Kolch W: MAP kinase signalling pathways in cancer. Oncogene 26, 3279–3290, 2007. doi: 10.1038/sj.onc.1210421
  • Chen PN, Kuo WH, Chiang CL, Chiou HL, Hsieh YS, et al.: Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chem Biol Interact 163, 218–229, 2006. doi: 10.1016/j.cbi.2006.08.003
  • Luo LP, Han B, Yu XP, Chen XY, Zhou J, et al.: Anti-metastasis activity of black rice anthocyanins against breast cancer: analyses using an ErbB2 positive breast cancer cell line and tumoral xenograft model. Asian Pac J Cancer Prev 15, 6219–6225, 2014.
  • Park JH, Darvin P, Lim EJ, Joung YH, Hong DY, et al.: Hwanggeumchal sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts. PLoS One 7, e40531, 2012. doi: 10.1371/journal.pone.0040531
  • Harris SL and ALevine A: The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908, 2005.
  • Bai L and Wang S: Targeting apoptosis pathways for new cancer therapeutics. Annu Rev Med 65, 139–155, 2014. doi: 10.1146/annurev-med-010713-141310
  • Hudson EA, Dinh PA, Kokubun T, and Simmonds MS, Gescher A: Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiol Biomarkers Prev 9, 1163–1170, 2000.
  • Tan BL, Norhaizan ME, Yeap SK, and Roselina K: Water extract of brewers’ rice induces antiproliferation of human colorectal cancer (HT-29) cell lines via the induction of apoptosis. Eur Rev Med Pharmacol Sci 19, 1022–1029, 2015.
  • Forster GM, Raina K, Kumar A, Kumar S, Agarwal R, et al.: Rice varietal differences in bioactive bran components for inhibition of colorectal cancer cell growth. Food Chem 141, 1545–1552, 2013. doi: 10.1016/j.foodchem.2013.04.020
  • Chen MH, Choi SH, Kozukue N, Kim HJ, and Friedman M: Growth-inhibitory effects of pigmented rice bran extracts and three red bran fractions against human cancer cells: relationships with composition and antioxidative activities. J Agric Food Chem 60, 9151–9161, 2012. doi: 10.1021/jf3025453
  • Chatthongpisut R, Schwartz SJ, and Yongsawatdigul J: Antioxidant activities and antiproliferative activity of Thai purple rice cooked by various methods on human colon cancer cells. Food Chem 188, 99–105, 2015. doi: 10.1016/j.foodchem.2015.04.074
  • Punvittayagul C, Sankam P, Taya S, and Wongpoomchai R: Anticlastogenicity and Anticarcinogenicity of Purple Rice Extract in Rats. Nutr Cancer 68, 646–653, 2016. doi: 10.1080/01635581.2016.1158289
  • Suttiarporn P, Chumpolsri W, Mahatheeranont S, Luangkamin S, Teepsawang S, et al.: Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients 7, 1672–1687, 2015. doi: 10.3390/nu7031672
  • Boateng J, Verghese M, Panala V, Walker L, and Shackelford L: Protective effects of rice bran on chemically induced colon tumorigenesis may be due to synergistic/additive properties of bioactive components. Int J Cancer Res 5, 153–166, 2009.
  • Barnes DS, Clapp NK, Scott DA, Oberst DL, and Berry SG: Effects of wheat, rice, corn, and soybean bran on 1,2-dimethylhydrazine-induced large bowel tumorigenesis in F344 rats. Nutr Cancer 5, 1–9, 1983. doi: 10.1080/01635588309513772
  • Tomita H, Kuno T, Yamada Y, Oyama T, Asano N, et al.: Preventive effect of fermented brown rice and rice bran on N-methyl-N′-nitro-N-nitrosoguanidine-induced gastric carcinogenesis in rats. Oncol Rep 19, 11–15, 2008.
  • Tammasakchai A, Reungpatthanaphong S, Chaiyasut C, Rattanachitthawat S, and Suwannalert P: Red strain oryza sativa-unpolished thai rice prevents oxidative stress and colorectal aberrant crypt foci formation in rats. Asian Pac J Cancer Prev 13, 1929–1933, 2012.
  • Phannasorn W, and Chewonarin T. Chemopreventive effect of purple rice (oryza sativa L. indica) extract on the promotion of rat colon carcinogenesis. Chiang Mai University: Chiang Mai, Thailand, 2014.
  • Yang QM, Pan XH, Kong WB, Yang H, Su YD, et al.: Antioxidant activities of malt extract from barley (Hordeum vulgare L.) toward various oxidative stress in vitro and in vivo. Food Chem 118, 84–89, 2010. doi: 10.1016/j.foodchem.2009.04.094
  • Madhujith T and Shahidi F: Antioxidative and antiproliferative properties of selected barley (Hordeum vulgarae L.) cultivars and their potential for inhibition of low-density lipoprotein (LDL) cholesterol oxidation. J Agric Food Chem 55, 5018–5024, 2007. doi: 10.1021/jf070072a
  • Devi PS, Kumar MS, and Das SM: Evaluation of antiproliferative activity of red sorghum bran anthocyanin on a human breast cancer cell line (mcf-7). Int J Breast Cancer 2011, 891481, 2011. doi: 10.4061/2011/891481
  • Dia VP, Pangloli P, Jones L, McClure A, and Patel A: Phytochemical concentrations and biological activities of Sorghum bicolor alcoholic extracts. Food Funct 7, 3410–3420, 2016. doi: 10.1039/c6fo00757k
  • Gomez-Cordoves C, Bartolome B, Vieira W, and Virador VM: Effects of wine phenolics and sorghum tannins on tyrosinase activity and growth of melanoma cells. J Agric Food Chem 49, 1620–1624, 2001. doi: 10.1021/jf001116h
  • Millan A and Huerta S: Apoptosis-inducing factor and colon cancer. J Surg Res 151, 163–170, 2009. doi: 10.1016/j.jss.2007.05.020
  • Ortiz-Martinez M, Winkler R, and García-Lara S: Preventive and therapeutic potential of peptides from cereals against cancer. J Proteomics 111, 165–183, 2014. doi: 10.1016/j.jprot.2014.03.044
  • Kong CKL, Lam WS, Chiu LCM, Ooi VEC, Sun SSM, et al.: A rice bran polyphenol, cycloartenyl ferulate, elicits apoptosis in human colorectal adenocarcinoma SW480 and sensitizes metastatic SW620 cells to TRAIL-induced apoptosis. Biochem Pharmacol 77, 1487–1496, 2009. doi: 10.1016/j.bcp.2009.02.008
  • Takashima A, Ohtomo M, Kikuchi T, Iwashita J, Abe T, et al.: Differentiation- and apoptosis-inducing activities of rice bran extracts in a human colon cancer cell line. J Food Sci Technol-Mysore 50, 595–599, 2013. doi: 10.1007/s13197-011-0368-2
  • Srisala S, Chunhabundit R, Kongkachuichai R, Jittorntrum B, and Visetpanit Y: Effects of bran extracts from Thai molecular breeding rices on growth and apoptosis in human promyelocytic leukemia cells. Thai J Toxicol 24, 81–91, 2009.
  • Pratiwi R, Tunjung WAS, Rumiyati R, and Amalia AR: Black rice bran extracts and fractions containing Cyanidin 3-glucoside and Peonidin 3-glucoside induce apoptosis in human cervical cancer cells. Indonesian J Biotechol 20, 69–76, 2015.
  • Banjerdpongchai R, Wudtiwai B, and Sringarm K: Cytotoxic and apoptotic-inducing effects of purple rice extracts and chemotherapeutic drugs on human cancer cell lines. Asian Pac J Cancer Prev 14, 6541–6548, 2014.
  • Jeong JB and Lee SH: Anti-cancer activity of protocatechualdehyde through HDAC2-mediated downregulation of cyclin D1 in human colorectal cancer cells. Faseb J 27, 578–578, 2013. doi: 10.1096/fasebj.27.1_supplement.lb578
  • Yang L, Allred KF, Geera B, Allred CD, and Awika JM: Sorghum phenolics demonstrate estrogenic action and induce apoptosis in nonmalignant colonocytes. Nutr Cancer 64, 419–427, 2012. doi: 10.1080/01635581.2012.657333

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.