232
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

Achievable Central Nervous System Concentrations of the Green Tea Catechin EGCG Induce Stress in Glioblastoma Cells in Vitro

ORCID Icon, , , ORCID Icon, &
Pages 1145-1158 | Received 12 Dec 2017, Accepted 24 Jun 2018, Published online: 10 Sep 2018

References

  • Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, et al.: Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5), 459–466, 2009.
  • Khan N and Mukhtar H: Tea polyphenols for health promotion. Life Sci 81(7), 519–533, 2007.
  • Graham HN: Green tea composition, consumption, and polyphenol chemistry. Prev Med 21(3), 334–350, 1992.
  • Tachibana H: Green tea polyphenol sensing. Proc Jpn Acad Ser B Phys Biol Sci 87(3), 66–80, 2011.
  • Singh BN, Shankar S, and Srivastava RK: Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem Pharmacol 82(12), 1807–1821, 2011.
  • Khan N, Afaq F, Saleem M, Ahmad N, and Mukhtar H: Targeting multiple signaling pathways by green tea polyphenol (−)-epigallocatechin-3-gallate. Cancer Res 66(5), 2500–2505, 2006.
  • Ahmad N, Cheng P, and Mukhtar H: Cell cycle dysregulation by green tea polyphenol epigallocatechin-3-gallate. Biochem Biophys Res Commun 275(2), 328–334, 2000.
  • Liang YC, Lin-Shiau SY, Chen CF, and Lin JK: Inhibition of cyclin-dependent kinases 2 and 4 activities as well as induction of Cdk inhibitors p21 and p27 during growth arrest of human breast carcinoma cells by (−)-epigallocatechin-3-gallate. J Cell Biochem 75(1), 1–12, 1999.
  • Yang GY, Liao J, Kim K, Yurkow EJ, and Yang CS: Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis 19(4), 611–616, 1998.
  • Ahmad N, Feyes DK, Nieminen AL, Agarwal R, and Mukhtar H: Green tea constituent epigallocatechin-3-gallate and induction of apoptosis and cell cycle arrest in human carcinoma cells. J Natl Cancer Inst 89(24), 1881–1886, 1997.
  • Shimizu M, Deguchi A, Lim JT, Moriwaki H, Kopelovich L, et al.: (−)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin Cancer Res 11(7), 2735–2746, 2005.
  • Gupta S, Hastak K, Afaq F, Ahmad N, and Mukhtar H: Essential role of caspases in epigallocatechin-3-gallate-mediated inhibition of nuclear factor kappa B and induction of apoptosis. Oncogene 23(14), 2507–2522, 2004.
  • Liang YC, Lin-shiau SY, Chen CF, and Lin JK: Suppression of extracellular signals and cell proliferation through EGF receptor binding by (−)-epigallocatechin gallate in human A431 epidermoid carcinoma cells. J Cell Biochem 67(1), 55–65, 1997.
  • Adhami VM, Siddiqui IA, Ahmad N, Gupta S, and Mukhtar H: Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res 64(23), 8715–8722, 2004.
  • Li M, He Z, Ermakova S, Zheng D, Tang F, et al.: Direct inhibition of insulin-like growth factor-I receptor kinase activity by (-)-epigallocatechin-3-gallate regulates cell transformation. Cancer Epidemiol Biomarkers Prev 16(3), 598–605, 2007.
  • Afaq F, Adhami VM, Ahmad N, and Mukhtar H: Inhibition of ultraviolet B-mediated activation of nuclear factor kappaB in normal human epidermal keratinocytes by green tea Constituent (-)-epigallocatechin-3-gallate. Oncogene 22(7), 1035–1044, 2003.
  • Chung JY, Park JO, Phyu H, Dong Z, and Yang CS: Mechanisms of inhibition of the Ras-MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (−)-epigallocatechin-3-gallate and theaflavin-3,3'-digallate. FASEB J 15(11), 2022–2024, 2001.
  • Nam S, Smith DM and Dou QP: Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276(16), 13322–13330, 2001.
  • Das A, Banik NL and Ray SK: Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer 116(1), 164–176, 2010.
  • Yokoyama S, Hirano H, Wakimaru N, Sarker KP and Kuratsu J: Inhibitory effect of epigallocatechin-gallate on brain tumor cell lines in vitro. Neuro Oncol 3(1), 22–28, 2001.
  • Agarwal A, Sharma V, Tewari R, Koul N, Joseph C, et al.: Epigallocatechin-3-gallate exhibits anti-tumor effect by perturbing redox homeostasis, modulating the release of pro-inflammatory mediators and decreasing the invasiveness of glioblastoma cells. Mol Med Rep 1(4), 511–515, 2008.
  • Lee MJ, Wang ZY, Li H, Chen L, Sun Y, et al.: Analysis of plasma and urinary tea polyphenols in human subjects. Cancer Epidemiol Biomarkers Prev 4(4), 393–399, 1995.
  • Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, et al.: Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19(10), 1771–1776, 1998.
  • Mattson MP: Hormesis defined. Ageing Res Rev 7(1), 1–7, 2008.
  • Xie Y, Bergstrom T, Jiang Y, Johansson P, Marinescu VD, et al.: The human glioblastoma cell culture resource: Validated cell models representing all molecular subtypes. EBioMedicine 2(10), 1351–1363, 2015.
  • Vargas MH: ED50plus v1.0. 2000: Instituto Nacional de Enfermedades Respiratorias,
  • Sankar A, Thomas DG and Darling JL: Sensitivity of short-term cultures derived from human malignant glioma to the anti-cancer drug temozolomide. Anticancer Drugs 10(2), 179–185, 1999.
  • Byun EH, Omura T, Yamada K and Tachibana H: Green tea polyphenol epigallocatechin-3-gallate inhibits TLR2 signaling induced by peptidoglycan through the polyphenol sensing molecule 67-kDa laminin receptor. FEBS Lett 585(5), 814–820, 2011.
  • Vazquez CL and Colombo MI: Assays to assess autophagy induction and fusion of autophagic vacuoles with a degradative compartment, using monodansylcadaverine (MDC) and DQ-BSA. Meth Enzymol 452, 85–95, 2009.
  • Schneider CA, Rasband WS and Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Meth 9(7), 671–675, 2012.
  • Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic acids Res 29(9), e45, 2001.
  • Sonoda JI, Ikeda R, Baba Y, Narumi K, Kawachi A, et al.: Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression. Exp Ther Med 8(1), 59–63, 2014.
  • Shen X, Zhang Y, Feng Y, Zhang L, Li J, et al.: Epigallocatechin-3-gallate inhibits cell growth, induces apoptosis and causes S phase arrest in hepatocellular carcinoma by suppressing the AKT pathway. Int J Oncol 44(3), 791–796, 2014.
  • Sadava D, Whitlock E and Kane SE: The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem Biophys Res Commun 360(1), 233–237, 2007.
  • Yang CS, Chen L, Lee MJ, Balentine D, Kuo MC, et al.: Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 7(4), 351–354, 1998.
  • Perazzoli G, Prados J, Ortiz R, Caba O, Cabeza L, et al.: Temozolomide resistance in glioblastoma cell lines: Implication of MGMT, MMR, P-glycoprotein and CD133 expression. PLoS One 10(10), e0140131, 2015.
  • Huang Y, Sumida M, Kumazoe M, Sugihara K, Suemasu Y, et al.: Oligomer formation of a tea polyphenol, EGCG, on its sensing molecule 67 kDa laminin receptor. Chem Commun (Camb) 53(12), 1941–1944, 2017.
  • Menard S, Tagliabue E and Colnaghi MI: The 67 kDa laminin receptor as a prognostic factor in human cancer. Breast Cancer Res Treat 52(1–3), 137–145, 1998.
  • Mukhtar H and Ahmad N: Tea polyphenols: Prevention of cancer and optimizing health. Am J Clin Nutr 71(6 Suppl), 1698S–1702S, 2000; discussion 1703S-4S.
  • Peter B, Bosze S, and Horvath R: Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCg): Review of recent advances from molecular mechanisms to nanomedicine and clinical trials. Eur Biophys J 46(1), 1–424, 2017.
  • Heymann D: Autophagy: A protective mechanism in response to stress and inflammation. Curr Opin Investig Drugs 7(5), 443–450, 2006.
  • Gu JW, Makey KL, Tucker KB, Chinchar E, Mao X, et al.: EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1alpha and NFkappaB, and VEGF expression. Vasc Cell 5(1), 9, 2013.
  • Tran PL, Kim SA, Choi HS, Yoon JH, and Ahn SG: Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer 10, 276, 2010.
  • Patra SK, Rizzi F, Silva A, Rugina DO, and Bettuzzi S: Molecular targets of (-)-epigallocatechin-3-gallate (EGCG): Specificity and interaction with membrane lipid rafts. J Physiol Pharmacol 59(Suppl 9), 217–235, 2008.
  • Imai K, Suga K, and Nakachi K: Cancer-preventive effects of drinking green tea among a Japanese population. Prev Med 26(6), 769–775, 1997.
  • Nakachi K, Suemasu K, Suga K, Takeo T, Imai K, et al.: Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn J Cancer Res 89(3), 254–261, 1998.
  • Tachibana H, Koga K, Fujimura Y, and Yamada K: A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11(4), 380–381, 2004.
  • Ermakova S, Choi BY, Choi HS, Kang BS, Bode AM, et al.: The intermediate filament protein vimentin is a new target for epigallocatechin gallate. J Biol Chem 280(17), 16882–16890, 2005.
  • Li S, Wu L, Feng J, Li J, Liu T, et al.: In vitro and in vivo study of epigallocatechin-3-gallate-induced apoptosis in aerobic glycolytic hepatocellular carcinoma cells involving inhibition of phosphofructokinase activity. Sci Rep 6, 28479, 2016.
  • Jankun J, Selman SH, Swiercz R, and Skrzypczak-Jankun E: Why drinking green tea could prevent cancer. Nature 387(6633), 561, 1997.
  • Chowdhury A, Nandy SK, Sarkar J, Chakraborti T, and Chakraborti S: Inhibition of pro-/active MMP-2 by green tea catechins and prediction of their interaction by molecular docking studies. Mol Cell Biochem 427(1–2), 111–122, 2017.
  • Mochizuki M, Yamazaki S, Kano K, and Ikeda T: Kinetic analysis and mechanistic aspects of autoxidation of catechins. Biochim Biophys Acta 1569(1–3), 35–44, 2002.
  • Yamamoto T, Lewis J, Wataha J, Dickinson D, Singh B, et al.: Roles of catalase and hydrogen peroxide in green tea polyphenol-induced chemopreventive effects. J Pharmacol Exp Ther 308(1), 317–323, 2004.
  • Sofer A, Lei K, Johannessen CM, and Ellisen LW: Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 25(14), 5834–5845, 2005.
  • Inbal B, Bialik S, Sabanay I, Shani G, and Kimchi A: DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157(3), 455–468, 2002.
  • Szalai P, Hagen LK, Saetre F, Luhr M, Sponheim M, et al.: Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp Cell Res 333(1), 21–38, 2015.
  • Tews DS: Cell death and oxidative stress in gliomas. Neuropathol Appl Neurobiol 25(4), 272–284, 1999.
  • Chen Y, McMillan-Ward E, Kong J, Israels SJ, and Gibson SB: Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15(1), 171–182, 2008.
  • Shankar S, Ganapathy S, Hingorani SR and Srivastava RK: EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13, 440–452, 2008.
  • Ishii T, Ichikawa T, Minoda K, Kusaka K, Ito S, et al.: Human serum albumin as an antioxidant in the oxidation of (-)-epigallocatechin gallate: Participation of reversible covalent binding for interaction and stabilization. Biosci Biotechnol Biochem 75(1), 100–106, 2011.
  • Sugisawa A and Umegaki K: Physiological concentrations of (-)-epigallocatechin-3-O-gallate (EGCg) prevent chromosomal damage induced by reactive oxygen species in WIL2-NS cells. J Nutr 132(7), 1836–1839, 2002.
  • Filomeni G, De Zio D, and Cecconi F: Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ 22(3), 377–388, 2015.
  • Hu YL, Jahangiri A, De Lay M, and Aghi MK: Hypoxia-induced tumor cell autophagy mediates resistance to anti-angiogenic therapy. Autophagy 8(6), 979–981, 2012.
  • Calabrese EJ and Baldwin LA: U-shaped dose-responses in biology, toxicology, and public health. Annu Rev Public Health 22, 15–33, 2001.
  • Rainey N, Motte L, Aggarwal BB, and Petit PX: Curcumin hormesis mediates a cross-talk between autophagy and cell death. Cell Death Dis 6, e2003, 2015.
  • Kim S, Lee MJ, Hong J, Li C, Smith TJ, et al.: Plasma and tissue levels of tea catechins in rats and mice during chronic consumption of green tea polyphenols. Nutr Cancer 37(1), 41–48, 2000.
  • Mattson MP and Meffert MK: Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ 13(5), 852–860, 2006.
  • Jeong WS, Jun M, and Kong AN: Nrf2: A potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal 8(1–2), 99–106, 2006.
  • West AE, Chen WG, Dalva MB, Dolmetsch RE, Kornhauser JM, et al.: Calcium regulation of neuronal gene expression. Proc Natl Acad Sci USA 98(20), 11024–11031, 2001.
  • Liu J, Narasimhan P, Yu F, and Chan PH: Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin. Stroke 36(6), 1264–1269, 2005.
  • Diez-Villanueva A, Mallona I, and Peinado MA: Wanderer, an interactive viewer to explore DNA methylation and gene expression data in human cancer. Epigenet Chromatin 8, 22, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.