245
Views
4
CrossRef citations to date
0
Altmetric
Articles

In silico identification of putative roles of food-derived xeno-mirs on diet-associated cancer

ORCID Icon &
Pages 481-488 | Received 30 Jul 2019, Accepted 18 Sep 2019, Published online: 04 Oct 2019

References

  • Liu W and Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20:18. doi:10.1186/s13059-019-1629-z
  • Yu L, Zhao J, Gao L. Predicting potential drugs for breast cancer based on miRNA and tissue specificity. Int J Biol Sci. 2018;14:971–982.
  • Huntley RP, Kramarz B, Sawford T, Umrao Z, Kalea A, Acquaah V, Martin MJ, Mayr M, Lovering RC. Expanding the horizons of microRNA bioinformatics. RNA. 2018;24:1005–1017.
  • Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455:58–63.
  • Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression. Nat Genet. 2011;43:854–859.
  • Li S-C, Chan W-C, Hu L-Y, Lai C-H, Hsu C-N, Lin WC. Identification of homologous microRNAs in 56 animal genomes. Genomics 2010;96:1–9.
  • Perge P, Nagy Z, Decmann A, Igaz I, Igaz P. Potential relevance of microRNAs in inter-species epigenetic communication, and implications for disease pathogenesis. RNA Biol. 2017;14:391–401.
  • Zhao Q, Liu Y, Zhang N, Hu M, Zhang H, Joshi T, Xu D. Evidence for plant-derived xenomiRs based on a large-scale analysis of public small RNA sequencing data from human samples. PLoS One. 2018;13:e0187519.
  • Sanchita R, Trivedi R, Asif MH, Trivedi PK. Dietary plant miRNAs as an augmented therapy: cross-kingdom gene regulation. RNA Biol. 2018;15:1433–1439.
  • Fabris L, Calin GA. Circulating free xeno-microRNAs – the new kids on the block. Mol Oncol. 2016;10:503–508.
  • Zhang L, Chen T, Yin Y, Zhang CY, Zhang YL. Dietary microRNA-A novel functional component of food. Adv Nutr. 2019;10:711–721. doi:10.1093/advances/nmy127.
  • Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22:107–126.
  • Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, Wang SE. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016;26:217–228.
  • Liu YC, Chen WL, Kung WH, Huang HD. Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi. BMC Genomics. 2017;18:112.
  • Link J, Thon C, Schanze D, Steponaitiene R, Kupcinskas J, Zenker M, Canbay A, Malfertheiner P, Link A. Food-derived xeno-microRNAs: influence of diet and detectability in gastrointestinal tract-proof-of-principle study. Mol Nutr Food Res. 2019;63:e1800076.
  • Shu J, Chiang K, Zhao D, Cui J. Human absorbable microRNA prediction based on an ensemble manifold ranking model. Proceedings (IEEE Int Conf Bioinformatics Biomed) 2015;2015:295–300.
  • Artzi S, Kiezun A, Shomron N. miRNAminer: a tool for homologous microRNA gene search. BMC Bioinformatics 2008;9:39–45.
  • Kiezun A, Artzi S, Modai S, Volk N, Isakov O, Shomron N. miRviewer: a multispecies microRNA homologous viewer. BMC Res Notes. 2012;5:92–97.
  • Chiang K, Shu J, Zempleni J, Cui J. Dietary MicroRNA Database (DMD): an archive database and analytic tool for food-borne microRNAs. PLoS One. 2015;10:e0128089.
  • Wu WS, Tu BW, Chen TT, Hou SW, Tseng JT. CSmiRTar: condition-specific microRNA targets database. PLoS One. 2017;12: e0181231.
  • Backes C, Kehl T, Stöckel D, Fehlmann T, Schneider L, Meese E, Lenhof HP, Keller A. miRPathDB: a new dictionary on microRNAs and target pathways. Nucleic Acids Res. 2017;45:D90–D96.
  • Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, Hatzigeorgiou AG. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40:W498–W504.
  • Arai E, Sakamoto H, Ichikawa H, Totsuka H, Chiku S, Gotoh M, Mori T, Nakatani T, Ohnami S, Nakagawa T, et al. Multilayer-omics analysis of renal cell carcinoma, including the whole exome, methylome and transcriptome. Int J Cancer. 2014;135:1330–1342.
  • Hu J, Huang Y, Wu Y, Liu F, Sun D, Wang K, Qu H. NTRK2 is an oncogene and associated with microRNA-22 regulation in human gastric cancer cell lines. Tumour Biol. 2016;37:15115–15123.
  • D’Orazi G, Rinaldo C, Soddu S. Updates on HIPK2: a resourceful oncosuppressor for clearing cancer. J Exp Clin Cancer Res. 2012;31:63–70.
  • Aristizabal Prada ET, Heinzle V, Knösel T, Nölting S, Spöttl G, Maurer J, Spitzweg C, Angele M, Schmidt N, Beuschlein F, et al. Tropomyosin receptor kinase: a novel target in screened neuroendocrine tumors. Endocr Relat Cancer. 2018;25:547–560.
  • Aykan NF. Red meat and colorectal cancer. Oncol Rev. 2015;9:288–294.
  • Kim M, Park K. Dietary fat intake and risk of colorectal cancer: a systematic review and meta-analysis of prospective studies. Nutrients. 2018;10:E1963,.
  • Turner ND, Lloyd SK. Association between red meat consumption and colon cancer: a systematic review of experimental results. Exp Biol Med. 2017;242:813–839.
  • Kumar D, Kumar S, Ayachit G, Bhairappanavar SB, Ansari A, et al. Cross-kingdom regulation of putative miRNAs derived from happy tree in cancer pathway: a systems biology approach. Int J Mol Sci. 2017;18:E1191.
  • Sharma A, Sahu S, Kumari P, Gopi SR, Malhotra R, Biswas S. Genome-wide identification and functional annotation of miRNAs in anti-inflammatory plant and their cross-kingdom regulation in Homo sapiens. J Biomol Struct Dyn. 2017;35:1389–1400.
  • Mu J, Zhuang X, Wang Q, Jiang H, Deng Z‐B, Wang B, Zhang L, Kakar S, Jun Y, Miller D. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res. 2014;58:1561–1573.
  • Hou D, He F, Ma L, Cao M, Zhou Z, Wei Z, Xue Y, Sang X, Chong H, Tian C, et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem. 2018;57:197–205.
  • Del Corno M, Donninelli G, Conti L, Gessani S. Linking diet to colorectal cancer: the emerging role of microRNA in the communication between plant and animal kingdoms. Front Microbiol. 2017;8:597–606.
  • Dever JT, Kemp MQ, Thompson AL, Keller HGK, Waksmonski JC, Barnes DM. Survival and diversity of human homologous dietary microRNAs in conventionally cooked top sirloin and dried bovine tissue extracts. PLoS One 10, e0138275, 2015.
  • Benmoussa A, Provost P. Milk microRNAs in health and disease. Compr Rev Food Sci Food Saf. 2019;18:703–722.
  • Philip A, Ferro VA, Tate RJ. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol Nutr Food Res. 2015;59:1962–1972.
  • Yang J, Kongchan N, Primo Planta C, Neilson JR, Hirschi KD. The atypical genesis and bioavailability of the plant-based small RNA MIR2911: bulking up while breaking down. Mol Nutr Food Res. 2017;61–67.
  • Williams JM, Duckworth CA, Burkitt MD, Watson AJM, Campbell BJ, Pritchard DM. Epithelial cell shedding and barrier function: a matter of life and death at the small intestinal villus tip. Vet Pathol. 2015;52:445–455.
  • Witwer KW, Hirschi KD. Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. Bioessays. 2014;36:394–406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.