213
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Diet-Derived Gallated Catechins Prevent TGF-β-Mediated Epithelial-Mesenchymal Transition, Cell Migration and Vasculogenic Mimicry in Chemosensitive ES-2 Ovarian Cancer Cells

, , &
Pages 169-180 | Received 18 Jul 2019, Accepted 15 Nov 2019, Published online: 04 Mar 2020

References

  • Jayson GC, Kohn EC, Kitchener HC, Ledermann JA. Ovarian cancer. Lancet. 2014;384(9951):1376–1388. doi:10.1016/S0140-6736(13)62146-7
  • Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, et al. Ovarian cancer statistics, 2018. CA: Cancer J Clinicians. 2018;68:284–296. doi:10.3322/caac.21456
  • Canadian Cancer Society. 2019. Survival statistics for ovarian cancer. Retrieved from: http://www.cancer.ca/en/cancer-information/cancer-type/ovarian/prognosis-and-survival/survival-statistics/?region=on.
  • Karlsson MC, Gonzalez SF, Welin J, Fuxe J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol. 2017;11(7):781–791. doi:10.1002/1878-0261.12092
  • Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–1564. doi:10.1126/science.1203543
  • Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol. 2003;4:657–665. doi:10.1038/nrm1175
  • Martin TA, Jiang WG. Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta. 2009;1788(4):872–891. doi:10.1016/j.bbamem.2008.11.005
  • Thierry JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–142. doi:10.1038/nrm1835
  • Tsuji T, Ibaragi S, Hu GF. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res. 2009;69(18):7135–7139. doi:10.1158/0008-5472.CAN-09-1618
  • Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275–292. doi:10.1016/j.cell.2011.09.024
  • Roche J. The epithelial-to-mesenchymal transition in cancer. Cancers. 2018;10(2):52. doi:10.3390/cancers10020052
  • Clarke DC, Liu X. Decoding the quantitative nature of TGF-beta/Smad signaling. Trends Cell Biol. 2008;18(9):430–442. doi:10.1016/j.tcb.2008.06.006
  • Miyazono K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad, Ser B. 2009;85(8):314–323. doi:10.2183/pjab.85.314
  • Liu Q, Qiao L, Liang N, Xie J, Zhang J, Deng G, Luo H, Zhang J. The relationship between vasculogenic mimicry and epithelial-mesenchymal transitions. J Cell Mol Med. 2016;20(9):1761–1769. doi:10.1111/jcmm.12851
  • Yang CS, Wang H, Chen JX, Zhang J. Effects of tea catechins on cancer signaling pathways. Enzymes. 2014;36:195–221. doi:10.1016/B978-0-12-802215-3.00010-0
  • Negri A, Naponelli V, Rizzi F, Bettuzzi S. Molecular targets of epigallocatechin-gallate (EGCG): A special focus on signal transduction and cancer. Nutrients. 2018;10(12):1936. doi:10.3390/nu10121936
  • Rady I, Mohamed H, Rady M, Siddiqui IA, Mukhtar H. Cancer preventive and therapeutic effects of EGCG, the major polyphenol in green tea. Egyptian J Basic Appl Sci. 2018;5(1):1–23. doi:10.1016/j.ejbas.2017.12.001
  • Hills CA, Kelland LR, Abel G, Siracky J, Wilson AP, Harrap KR. Biological properties of ten human ovarian carcinoma cell lines: calibration in vitro against four platinum complexes. Br J Cancer. 1989;59(4):527–534. doi:10.1038/bjc.1989.108
  • Djerir D, Iddir M, Bourgault S, Lamy S, Annabi B. Biophysical evidence for differential gallated green tea catechins binding to membrane type-1 matrix metalloproteinase and its interactors. Biophys Chem. 2018;234:34–41. doi:10.1016/j.bpc.2018.01.002
  • Annabi B, Lee Y-T, Turcotte S, Naud E, Desrosiers RR, Champagne M, Eliopoulos N, Galipeau J, Béliveau R. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells. 2003;21(3):337–347. doi:10.1634/stemcells.21-3-337
  • Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11(11):1287–1296. doi:10.1038/ncb1973
  • Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19(2):156–172. doi:10.1038/cr.2009.5
  • Fuxe J, Vincent T, Garcia de Herreros A. Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle. 2010;9(12):2363–2374. doi:10.4161/cc.9.12.12050
  • Najafi M, Ahmadi A, Mortezaee K. Extracellular-signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signaling as a target for cancer therapy: An updated review. Cell Biol Int. 2019;43(11):1206–1222. doi:10.1002/cbin.11187
  • Ahmadi A, Najafi M, Farhood B, Mortezaee K. Transforming growth factor-β signaling: Tumorigenesis and targeting for cancer therapy. J Cell Physiol. 2019;234(8):12173–12187. doi:10.1002/jcp.27955
  • Zhang J, Qiao L, Liang N, Xie J, Luo H, Deng G, Zhang J. Vasculogenic mimicry and tumor metastasis. J Buon. 2016;21(3):533–541.
  • Liu W, Lv C, Zhang B, Zhou Q, Cao Z. MicroRNA-27b functions as a new inhibitor of ovarian cancer-mediated vasculogenic mimicry through suppression of VE-cadherin expression. RNA. 2017;23(7):1019–1027. doi:10.1261/rna.059592.116
  • Wang Y, Liu P, Wang X, Mao H. Role of X‑linked inhibitor of apoptosis‑associated factor‑1 in vasculogenic mimicry in ovarian cancer. Mol Med Rep. 2017;16(1):325–330. doi:10.3892/mmr.2017.6597
  • van Staalduinen J, Baker D, Ten Dijke P, van Dam H. Epithelial-mesenchymal-transition-inducing transcription factors: new targets for tackling chemoresistance in cancer? Oncogene. 2018;37(48):6195–6211. doi:10.1038/s41388-018-0378-x
  • Huang RY-J, Chung VY, Thiery JP. Targeting pathways contributing to epithelial-mesenchymal transition (EMT) in epithelial ovarian cancer. Curr Drug Targets. 2012;13(13):1649–1653. doi:10.2174/138945012803530044
  • Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, Childs T, Chen J, Li J, Weberpals J, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:91doi:10.1186/1471-2407-12-91
  • Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY, Bapat SA. Snail and Slug mediate radioresistance and chemoresistance by antagonizing p53‐mediated apoptosis and acquiring a stem‐like phenotype in ovarian cancer cells. Stem Cells. 2009;27(9):2059–2068. doi:10.1002/stem.154
  • Ouanouki A, Lamy S, Annabi B. Anthocyanidins inhibit epithelial-mesenchymal transition through a TGFβ/Smad2 signaling pathway in glioblastoma cells. Mol Carcinog. 2017;56(3):1088–1099. doi:10.1002/mc.22575
  • Ikushima H, Miyazono K. TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10(6):415–424. doi:10.1038/nrc2853
  • Drabsch Y, Dijke P. TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012;31(3–4):553–568. doi:10.1007/s10555-012-9375-7
  • Pickup M, Novitskiy S, Moses HL. The roles of TGFβ in the tumour microenvironment. Nat Rev Cancer. 2013;13(11):788–799. doi:10.1038/nrc3603
  • Anthony ML, Nair R, Sebastian P, Karunagaran D. Changes in expression, and/or mutations in TGF-beta receptors (TGF-beta RI and TGF-beta RII) and Smad 4 in human ovarian tumors. J Cancer Res Clin Oncol. 2010;136:351–361. doi:10.1007/s00432-009-0703-4
  • Xi L, Hu W, Meng L, Zhou J, Lu Y, et al. Dysregulation of the TGF-β postreceptor signaling pathway in cell lines derived from primary or metastatic ovarian cancer. J Huazhong Univ Sci Technol [Med Sci]. 2004;24:62–65. doi:10.1007/BF02830708
  • Levy L, Hill CS. Smad4 dependency defines two classes of transforming growth factor-beta target genes and distinguishes TGF–induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Mol Cell Biol. 2005;25(18):8108–8125. doi:10.1128/MCB.25.18.8108-8125.2005
  • Tachibana H. Molecular basis for cancer chemoprevention by green tea polyphenol EGCG. Forum Nutr. 2009;61:156–169. doi:10.1159/000212748
  • van den Brûle FA, Berchuck A, Bast RC, Liu F-T, Gillet C, Sobel ME, Castronovo V. Differential expression of the 67-kD laminin receptor and 31-kD human laminin-binding protein in human ovarian carcinomas. Eur J Cancer. 1994;30(8):1096–1099. doi:10.1016/0959-8049(94)90464-2
  • van den Brûle FA, Castronovo V, Ménard S, Giavazzi R, Marzola M, Belotti D, Taraboletti G. Expression of the 67 kD laminin receptor in human ovarian carcinomas as defined by a monoclonal antibody, MLuC5. Eur J Cancer. 1996;32(9):1598–1602. doi:10.1016/0959-8049(96)00119-0
  • Song T, Choi CH, Cho YJ, Sung CO, Song SY, Kim T-J, Bae D-S, Lee J-W, Kim B-G. Expression of 67-kDa laminin receptor was associated with tumor progression and poor prognosis in epithelial ovarian cancer. Gynecol Oncol. 2012;125(2):427–432. doi:10.1016/j.ygyno.2012.01.030
  • Kuzuhara T, Suganuma M, Fujiki H. Green tea catechin as a chemical chaperone in cancer prevention. Cancer Lett. 2008;261(1):12–20. doi:10.1016/j.canlet.2007.10.037
  • Tabuchi M, Hayakawa S, Honda E, Ooshima K, Itoh T, Yoshida K, Park A-M, Higashino H, Isemura M, Munakata H, et al. Epigallocatechin-3-gallate suppresses transforming growth factor-beta signaling by interacting with the transforming growth factor-beta type II receptor. WJEM. 2013;3(4):100–107. doi:10.5493/wjem.v3.i4.100
  • Huang S-F, Horng C-T, Hsieh Y-S, Hsieh Y-H, Chu S-C, Chen P-N. Epicatechin-3-gallate reverses TGF-β1-induced epithelial-to-mesenchymal transition and inhibits cell invasion and protease activities in human lung cancer cells. Food Chem Toxicol. 2016;94:1–10. doi:10.1016/j.fct.2016.05.009
  • Ko H, So Y, Jeon H, Jeong M-H, Choi H-K, Ryu S-H, Lee S-W, Yoon H-G, Choi K-C. TGF-β1-induced epithelial-mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells. Cancer Lett. 2013;335(1):205–213. doi:10.1016/j.canlet.2013.02.018
  • Liu L-C, Tsao TC-Y, Hsu S-R, Wang H-C, Tsai T-C, Kao J-Y, Way T-D. EGCG inhibits transforming growth factor-β-mediated epithelial-to-mesenchymal transition via the inhibition of Smad2 and Erk1/2 signaling pathways in nonsmall cell lung cancer cells. J Agric Food Chem. 2012;60(39):9863–9873. doi:10.1021/jf303690x
  • Annabi B, Lachambre M-P, Bousquet-Gagnon N, Pagé M, Gingras D, Béliveau R. Green tea polyphenol (-)-epigallocatechin 3-gallate inhibits MMP-2 secretion and MT1-MMP-driven migration in glioblastoma cells. Biochim Biophys Acta. 2002;1542(1–3):209–220. doi:10.1016/S0167-4889(01)00187-2
  • Hendrix MJ, Seftor EA, Kirschmann DA, Quaranta V, Seftor RE. Remodeling of the microenvironment by aggressive melanoma tumor cells. Ann N Y Acad Sci. 2003;995(1):151–161. doi:10.1111/j.1749-6632.2003.tb03218.x
  • Nakano S, Megro S-i, Hase T, Suzuki T, Isemura M, Nakamura Y, Ito S. Computational molecular docking and X-ray crystallographic studies of catechins in new drug design strategies. Molecules (Basel, Switzerland). 2018;23(8):2020. doi:10.3390/molecules23082020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.