96
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Vitex doniana Leaves Extract Ameliorates Alterations Associated with 7, 12-Dimethyl Benz[a]Anthracene-Induced Mammary Damage in Female Wistar Rats

ORCID Icon, , ORCID Icon, &
Pages 98-112 | Received 17 May 2019, Accepted 21 Feb 2020, Published online: 28 Mar 2020

References

  • Babita KN, Singh M, Malik JS, Kalhan M. Breastfeeding reduces breast cancer risk: a case-control study in North India. Int J Prev Med. 2014;5(6):791–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25013701
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29313949
  • Rivera-Franco MM, Leon-Rodriguez E. Delays in breast cancer detection and treatment in developing countries. Breast Cancer (Auckl). 2018;12. doi:10.1177/1178223417752677
  • Azubuike SO, Muirhead C, Hayes L, McNally R. Rising global burden of breast cancer: the case of sub-Saharan Africa (with emphasis on Nigeria) and implications for regional development: a review. World J Surg Oncol. 2018;16(1):63. doi:10.1186/s12957-018-1345-2
  • Pace LE, Shulman LN. Breast cancer in Sub-Saharan Africa: Challenges and opportunities to reduce mortality. Oncologist. 2016;21(6):739–44. doi:10.1634/theoncologist.2015-0429
  • Yip CH, Buccimazza I, Hartman M, Deo SVS, Cheung P. Improving outcomes in breast cancer for low and middle income countries. World J Surg. 2015;39(3):686–92. Available from: http://link.springer.com/
  • Nurgali K, Jagoe RT, Abalo R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018;9:245. doi:10.3389/fphar.2018.00245
  • Alvarado A, Lopes AC, Faustino-Rocha AI, Cabrita AMS, Ferreira R, Oliveira PA, Colaço B. Prognostic factors in MNU and DMBA-induced mammary tumors in female rats. Pathol - Res Pract. 2017;213(5):441–6. doi:10.1016/j.prp.2017.02.014
  • Ananda H, Sharath Kumar KS, Sudhanva MS, Rangappa S, Rangappa KS. A trisubstituted pyrazole derivative reduces DMBA-induced mammary tumor growth in rats by inhibiting estrogen receptor-α expression. Mol Cell Biochem. 2018;449(1–2):137–44. doi:10.1007/s11010-018-3350-8
  • Kumar A, Sunita P, Jha S, Pattanayak SP. 7,8-Dihydroxycoumarin exerts antitumor potential on DMBA-induced mammary carcinogenesis by inhibiting ERα, PR, EGFR, and IGF1R: involvement of MAPK1/2-JNK1/2-Akt pathway. J Physiol Biochem. 2018;74(2):223–34. doi:10.1007/s13105-018-0608-2
  • Tabaczar S, Domeradzka K, Czepas J, Piasecka-Zelga J, Stetkiewicz J, Gwoździński K, Koceva-Chyła A. Anti-tumor potential of nitroxyl derivative Pirolin in the DMBA-induced rat mammary carcinoma model: A comparison with quercetin. Pharmacol Reports. 2015;67(3):527–34. doi:10.1016/j.pharep.2014.12.010
  • Karnam KC, Ellutla M, Bodduluru LN, Kasala ER, Uppulapu SK, Kalyankumarraju M, Lahkar M. Preventive effect of berberine against DMBA-induced breast cancer in female Sprague Dawley rats. Biomed Pharmacother. 2017;92:207–14. doi:10.1016/j.biopha.2017.05.069
  • Calaf GM, Urzua U, Termini L, Aguayo F. Oxidative stress in female cancers. Oncotarget. 2018;9(34):23824–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29805775
  • Kumari S, Badana AK, Mohan MG, Shailender G, Malla R. Reactive oxygen species: A key constituent in cancer survival. Biomark Insights. 2018;13.. doi:10.1177/1177271918755391
  • Krishnamachary B, Stasinopoulos I, Kakkad S, Penet M-F, Jacob D, Wildes F, Mironchik Y, Pathak AP, Solaiyappan M, Bhujwalla ZM. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts. Oncotarget. 2017;8(11):17981–94. doi:10.18632/oncotarget.14912
  • Levitsky DO, Dembitsky VM. Anti-breast cancer agents derived from plants. Nat Products Bioprospect. 2014;5(1):1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25466288
  • Shagufta AI. Tamoxifen a pioneering drug: An update on the therapeutic potential of tamoxifen derivatives. Eur J Med Chem. 2018;143:515–31. doi:10.1016/j.ejmech.2017.11.056
  • Amegbor K, Metowogo K, Eklu-Gadegbeku K, Agbonon A, Aklikokou KA. Preliminary evaluation of the wound healing effect of Vitex doniana sweet (Verbenaceae) in mice. African J Tradit Complement Altern Med AJTCAM. 2012;9(4):584–90.
  • Rani A, Sharma A. The genus Vitex: A review. Pharmacogn Rev. 2013;7(14):188–98. doi:10.4103/0973-7847.120522
  • Agbafor KN, Nwachukwu N. Phytochemical analysis and antioxidant property of leaf extracts of Vitex doniana and Mucuna pruriens. Biochem Res Int. 2011;2011:1–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21547085
  • Bolanle JD, Adetoro KO, Balarabe SA, Adeyemi OO. Hepatocurative potential of Vitex doniana root bark, stem bark and leaves extracts against CCl4–induced liver damage in rats. Asian Pac J Trop Biomed. 2014;4(6):480–5. doi:10.12980/APJTB.4.2014C207
  • Iwueke AV, Nwodo OF, Okoli CO. Evaluation of the anti-inflammatory and analgesic activities of Vitex doniana leaves. African J Biotechnol. 2006;5(20):1929–35.
  • Sahin K, Tuzcu M, Sahin N, Akdemir F, Ozercan I, Bayraktar S, Kucuk O. Inhibitory effects of combination of lycopene and genistein on 7,12- Dimethyl Benz(a)anthracene-induced breast cancer in rats. Nutr Cancer. 2011;63(8):1279–86. doi:10.1080/01635581.2011.606955
  • Niehaus WG, Samuelsson B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem. 1968;6(1):126–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4387188
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7. Available from: https://www.sciencedirect.com/science/article/abs/pii/0003986159900906
  • Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247(10):3170–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4623845
  • Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389–94. Available from: https://www.sciencedirect.com/science/article/pii/0003269772901327
  • Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc. 2008;2008(6):pdb.prot4986–pdb.prot4986. doi:10.1101/pdb.prot4986
  • Costa I, Solanas M, Escrich E. Histopathologic characterization of mammary neoplastic lesions induced with 7,12 dimethylbenz(alpha)anthracene in the rat: a comparative analysis with human breast tumors. Arch Pathol Lab Med. 2002;126(8):915–27. doi:10.1043/0003-9985(2002)126<0915:HCOMNL>2.0.CO;2
  • Louie MC, Sevigny MB. Steroid hormone receptors as prognostic markers in breast cancer. Am J Cancer Res. 2017;7(8):1617–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28861319
  • Yaşar P, Ayaz G, User SD, Güpür G, Muyan M. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod Med Biol. 2017;16(1):4–20. doi:10.1002/rmb2.12006
  • Bishayee A, Mandal A, Thoppil RJ, Darvesh AS, Bhatia D. Chemopreventive effect of a novel oleanane triterpenoid in a chemically induced rodent model of breast cancer. Int J Cancer. 2013;133(5):1054–63. doi:10.1002/ijc.28108
  • Ali S, School of life science, Jawaharlal Nehru University, New Delhi, India, Rasool M, Chaoudhry H, Pushparaj PN, Jha P, Hafiz A, Mahfooz M, Sami GA, Kamal MA, Bashir S, et al. Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation. 2016;12(3):135–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28149048
  • Hecht F, Pessoa CF, Gentile LB, Rosenthal D, Carvalho DP, Fortunato RS. The role of oxidative stress on breast cancer development and therapy. Tumor Biol. 2016;37(4):4281–91. Available from: http://link.springer.com/
  • Kalaiselvi M, Gomathi D, Ravikumar G, Devaki K, Uma C. Ameliorative effect of Ananus comosus peel on 7, 12 dimethylbenz (毩) anthracene induced mammary carcinogenesis with reference to oxidative stress. J Acute Dis. 2013;2:22–8. doi:10.1016/S2221-6189(13)60089-X
  • Adetoro KO, Bolanle JD, Abdullahi SB, Ahmed OA. In vivo antioxidant effect of aqueous root bark, stem bark and leaves extracts of Vitex doniana in CCl4 induced liver damage rats. Asian Pac J Trop Biomed. 2013;3(5):395–400. doi:10.1016/S2221-1691(13)60083-0
  • Glorieux C, Calderon PB. Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol Chem. 2017;398(10):1095–108. doi:10.1515/hsz-2017-0131
  • Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin J-B, Bertrand L, Verrax J, Calderon PB. Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochem Pharmacol. 2014;89(2):217–23. doi:10.1016/j.bcp.2014.02.025
  • Simone-Reuter BBA. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 2011;49(11):1603–16. doi:10.1016/j.freeradbiomed.2010.09.006
  • Silva FB, Romero WG, Carvalho A. L R d A, Souza GAA, Claudio ERG, Abreu GR. Effects of treatment with chemotherapy and/or tamoxifen on the biomarkers of cardiac injury and oxidative stress in women with breast cancer. Medicine (Baltimore). 2017;96(47):e8723. doi:10.1097/MD.0000000000008723
  • Tulotta C, Ottewell P. The role of IL-1B in breast cancer bone metastasis. Endocr Relat Cancer. 2018;25(7):R421–34. doi:10.1530/ERC-17-0309
  • Kamel M, Shouman S, El-Merzebany M, Kilic G, Veenstra T, Saeed M, Wagih M, Diaz-Arrastia C, Patel D, Salama S, et al. Effect of tumour necrosis factor-alpha on estrogen metabolic pathways in breast cancer cells. J Cancer. 2012;3:310–21. doi:10.7150/jca.4584
  • Baumgarten SC, Frasor J. Minireview: Inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol. 2012;26(3):360–71. doi:10.1210/me.2011-1302
  • Cho H, Park JH, Ahn EK, Oh JS. Kobophenol A isolated from roots of caragana sinica (Buc’hoz) Rehder exhibits anti-inflammatory activity by regulating NF-κB nuclear translocation in J774A.1 Cells. Toxicol Reports. 2018;5:647–53. doi:10.1016/j.toxrep.2018.05.011
  • Wen HC, Aguirre-Ghiso JA. Stress signaling and the shaping of the mammary tissue in development and cancer. Oncogene. 2014;33:1–8. Available from: doi:10.1038/onc.2013.554
  • Ercan C, van Diest PJ, Vooijs M. Mammary development and breast cancer: the role of stem cells. CMM. 2011;11(4):270–85. doi:10.2174/156652411795678007
  • Mohammed ZM, Going JJ, Edwards J, Elsberger B, Doughty JC, McMillan DC. The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer. 2012;107(5):864–73. doi:10.1038/bjc.2012.347
  • Hartmann LC, Degnim AC, Santen RJ, Dupont WD, Ghosh K. Atypical hyperplasia of the breast–risk assessment and management options. N Engl J Med. 2015;372(1):78–89. doi:10.1056/NEJMsr1407164
  • Cole K, Tabernero M, Anderson KS. Biologic characteristics of premalignant breast disease. Cancer Biomark. 2010;9(1–6):177–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22112476.
  • Shaaban AM, Sloane JP, West CR, Foster CS. Breast cancer risk in usual ductal hyperplasia is defined by estrogen receptor-alpha and Ki-67 expression. Am J Pathol. 2002;160(2):597–604. doi:10.1016/S0002-9440(10)64879-1
  • Dykes SS, Hughes VS, Wiggins JM, Fasanya HO, Tanaka M, Siemann D. Stromal cells in breast cancer as a potential therapeutic target. Oncotarget. 2018;9(34):23761–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29805773
  • Jana D, Sarkar DK, Ganguly S, Saha S, Sa G, Manna AK, Banerjee A, Mandal S. Role of Cyclooxygenase 2 (COX-2) in Prognosis of Breast Cancer. Indian J Surg Oncol. 2014;5(1):59–65. doi:10.1007/s13193-014-0290-y
  • Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ. Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem. 2002;277(21):18649–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11901151
  • Harris RE, Casto BC, Harris ZM. Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol. 2014;5(4):677. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25302170
  • Davies G, Martin L-A, Sacks N, Dowsett M. Cyclooxygenase-2 (COX-2), aromatase and breast cancer: a possible role for COX-2 inhibitors in breast cancer chemoprevention. Ann Oncol. 2002;13(5):669–78. doi:10.1093/annonc/mdf125
  • Catarino MD, Alves-Silva JM, Pereira OR, Cardoso SM. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases. CTMC. 2015;15(2):105–19. doi:10.2174/1568026615666141209144506
  • Mani R, Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry. 2018;145:187–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29161583
  • Wang J, Wang H, Sun K, Wang X, Pan H, Zhu J, Ji X, Li X. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signaling pathway. Drug Des Devel Ther. 2018;12:721–33. doi:10.2147/DDDT.S160020
  • Nile SH, Keum YS, Nile AS, Jalde SS, Patel RV. Antioxidant, anti-inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. J Biochem Mol Toxicol. 2018;32(1):e22002. doi:10.1002/jbt.22002
  • DeBolt S, Cook DR, Ford CM. L-Tartaric acid synthesis from vitamin C in higher plants. Proc Natl Acad Sci. 2006;103(14):5608–13. doi:10.1073/pnas.0510864103
  • Melino VJ, Soole KL, Ford CM. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries. BMC Plant Biol. 2009;9(1):145. doi:10.1186/1471-2229-9-145
  • Weber N, Ismail A, Gorwa-Grauslund M, Carlquist M. Biocatalytic potential of vanillin aminotransferase from Capsicum chinense. BMC Biotechnol. 2014;14(1):25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24712445
  • Chapa-Oliver A, Mejía-Teniente L. Capsaicin: From plants to a cancer-suppressing agent. Molecules. 2016;21(8):931. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27472308
  • Clark R, Lee SH. Anticancer properties of Capsaicin against human cancer. Anticancer Res. 2016;36(3):837–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26976969

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.