149
Views
2
CrossRef citations to date
0
Altmetric
Review

The Potential for Reducing Lynch Syndrome Cancer Risk with Nutritional Nrf2 Activators

&
Pages 404-419 | Received 16 Jul 2019, Accepted 29 Mar 2020, Published online: 11 Apr 2020

References

  • Dowty JG, Win AK, Buchanan DD, Lindor NM, Macrae FA, Clendenning M, Antill YC, Thibodeau SN, Casey G, Gallinger S, et al. Cancer risks for MLH1 and MSH2 mutation carriers. Hum Mutat. 2013;34(3):490–7. doi:10.1002/humu.22262
  • Lindor NM. Lynch syndrome 101 (years, that is). Am Soc Clin Oncol Educ Book [Internet]. 2014;101:27–32. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L606729856%5Cn 10.14694/EdBook_AM.2014.34.27%5Cn http://ak7rt6cb3z.search.serialssolutions.com?sid=EMBASE&issn=15488756&id=doi:10.14694%2FEdBook_AM.2014.34.27&atitle=
  • ten Broeke SW, Brohet RM, Tops CM, van der Klift HM, Velthuizen ME, Bernstein I, Capellá Munar G, Gomez Garcia E, Hoogerbrugge N, Letteboer TGW, et al. Lynch syndrome caused by germline PMS2 mutations: delineating the cancer risk. JCO. 2015;33(4):319–25. doi:10.1200/JCO.2014.57.8088
  • Bonadona V, Bonaïti B, Olschwang S, Grandjouan S, Huiart L, Longy M, Guimbaud R, Buecher B, Bignon Y-J, Caron O, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in lynch syndrome. JAMA. 2011;305(22):2304–10. doi:10.1001/jama.2011.743
  • Botma A, Vasen HFA, Van Duijnhoven FJB, Kleibeuker JH, Nagengast FM, Kampman E. Dietary patterns and colorectal adenomas in lynch syndrome: the GEOLynch cohort study. Cancer. 2013;119(3):512–21. doi:10.1002/cncr.27726
  • van Duijnhoven FJB, Botma A, Winkels R, Nagengast FM, Vasen HFA, Kampman E. Do lifestyle factors influence colorectal cancer risk in lynch syndrome? Fam Cancer. 2013;12(2):285–93. [Internet]. Available from: http://link.springer.com/10.1007/s10689-013-9645-8
  • Diergaarde B, Braam H, Vasen HF, Nagengast FM, van Muijen GNP, Kok FJ, Kampman E. Environmental factors and colorectal tumor risk in individuals with hereditary nonpolyposis colorectal cancer. Clin Gastroenterol Hepatol. 2007;5(6):736–42. doi:10.1016/j.cgh.2007.02.019
  • Đermadi D, Valo S, Pussila M, Reyhani N, Sarantaus L, Lalowski M, Baumann M, Nyström M. Inherited cancer predisposition sensitizes colonic mucosa to address Western diet effects and putative cancer-predisposing changes on mouse proteome. J Nutr Biochem. 2014;25(11):1196–206. doi:10.1016/j.jnutbio.2014.06.002
  • Winter JM, Hu Y, Young GP, Kohonen-Corish MRJ, Le Leu RK. Role of red meat and resistant starch in promutagenic adduct formation, MGMT repair, thymic lymphoma and intestinal tumourigenesis in Msh2-deficient mice. J Nutrigenet Nutrigenomics. 2015;7(4-6):299–313. doi:10.1159/000381675
  • Winkels RM, Botma A, Van Duijnhoven FJB, Nagengast FM, Kleibeuker JH, Vasen HFA, Kampman E. Smoking increases the risk for colorectal adenomas in patients with lynch syndrome. Gastroenterology. 2012;142(2):241–7. [Internet]. Available from: doi:10.1053/j.gastro.2011.10.033
  • Galland L. Diet and inflammation. Nutr Clin Pract. 2010;25(6):634–40. doi:10.1177/0884533610385703
  • Whalen KA, McCullough ML, Flanders WD, Hartman TJ, Judd S, Bostick RM. Paleolithic and mediterranean diet pattern scores are inversely associated with biomarkers of inflammation and oxidative balance in adults. J Nutr. 2016;146(6):1217–26. [Internet]. Available from: http://jn.nutrition.org/cgi/doi/10.3945/jn.115.224048
  • Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res - Fundam Mol Mech Mutagen. 2003;531(1–2):231–51. doi:10.1016/j.mrfmmm.2003.06.002
  • Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science. 2001;291(5507):1284–9. [Internet]. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1056154
  • Sameer AS, Nissar S, Fatima K. Mismatch repair pathway: molecules, functions, and role in colorectal carcinogenesis. Eur J Cancer Prev. 2014;23(4):246–57. doi:10.1097/CEJ.0000000000000019
  • Reyes GX, Schmidt TT, Kolodner RD, Hombauer H, Diego S, Jolla L. New insights into the mechanism of DNA mismatch repair. Chromosoma. 2015;124(4):443–62. doi:10.1007/s00412-015-0514-0
  • Martín-López JV, Fishel R. The mechanism of mismatch repair and the functional analysis of mismatch repair defects in Lynch syndrome. Fam Cancer. 2013;12(2):159–68. doi:10.1007/s10689-013-9635-x
  • Chang CL, Marra G, Chauhan DP, Ha HT, Chang DK, Ricciardiello L, Randolph A, Carethers JM, Boland CR. Oxidative stress inactivates the human DNA mismatch repair system. Am J Physiol Physiol. 2002;283(1):C148–54. doi:10.1152/ajpcell.00422.2001
  • Bridge G, Rashid S, Martin SA. DNA mismatch repair and oxidative DNA damage: Implications for cancer biology and treatment. Cancers (Basel). 2014;6(3):1597–614. doi:10.3390/cancers6031597
  • Hsu GW, Ober M, Carell T, Beese LS. Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature. 2004;431(7005):217–21. doi:10.1038/nature02908
  • Gupta RK, Patel AK, Shah N, Choudhary AK, Jha UK, Yadav UC, Gupta PK, Pakuwal U. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev. 2014;15(11):4405–9. [Internet]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24969860
  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked?. Free Radic Biol Med. 2010;49(11):1603–16. [Internet]. Available from: doi:10.1016/j.freeradbiomed.2010.09.006
  • Perse M. Oxidative stress in the pathogenesis of colorectal cancer: Cause or consequence? Biomed Res Int. 2013. doi:10.1155/2013/725710
  • Shalapour S, Karin M. Immunity, inflammation, and cancer an eternal fight between good and evil. J Clin Invest. 2015;125(9):3347–55. doi:10.1172/JCI80007
  • Iannello A, Thompson TW, Ardolino M, Marcus A, Raulet DH. Immunosurveillance and immunotherapy of tumors by innate immune cells. Curr Opin Immunol. 2016;38:52–8. [Internet]. Available from: doi:10.1016/j.coi.2015.11.001
  • Landskron G, De La Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:1–19. doi:10.1155/2014/149185
  • Bardou M, Barkun AN, Martel M, Ceschi M, Gutzwiller F, Moch H. Obesity and colorectal cancer. Gut. 2013;62(6):933–47. [Internet]. Available from: http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=23481261&retmode=ref&cmd=prlinks%5Cnpapers2://publication/doi/10.1136/gutjnl-2013-304701%5Cn%3CGotoISI%3E://WOS:000291306900006
  • Mendonça FM, de Sousa FR, Barbosa AL, Martins SC, Araújo RL, Soares R, Abreu C. Metabolic syndrome and risk of cancer: which link. Metabolism. 2015;64(2):182–9. [Internet]. Available from: doi:10.1016/j.metabol.2014.10.008
  • Sara Achenza MI, Selmi C. Autoimmunity and Cancer. Asian Pacific J Cancer Prev. 2012;13(SUPPL.1):29–40.
  • Kim ER, Chang DK. Colorectal cancer in inflammatory bowel disease: The risk, pathogenesis, prevention and diagnosis. WJG. 2014;20(29):9872–81. doi:10.3748/wjg.v20.i29.9872
  • Amir Aslani B, Ghobadi S. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sci. 2016;146:163–73. [Internet]. Available from: doi:10.1016/j.lfs.2016.01.014
  • Guerra-Araiza C, Álvarez-Mejía AL, Sánchez-Torres S, Farfan-García E, Mondragón-Lozano R, Pinto-Almazán R, Salgado-Ceballos H. Effect of natural exogenous antioxidants on aging and on neurodegenerative diseases. Free Radic Res. 2013;47(6–7):451–62. doi:10.3109/10715762.2013.795649
  • Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97:55–74. [Internet]. Available from: doi:10.1016/j.ejmech.2015.04.040
  • Vomund S, Schäfer A, Parnham MJ, Brüne B. Von Knethen A. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017;18(12):1–19.
  • Huang Y, Li W, Su Z, Kong A-N. The complexity of the Nrf2 pathway: Beyond the antioxidant response. Ageing Res Rev. 2015;22(2):134–9. [Internet]. Available from: 10.1016/j.arr.2011.12.005%5Cn 10.1016/j.freeradbiomed.2015.05.036
  • Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39(4):199–218. [Internet]. Available from: doi:10.1016/j.tibs.2014.02.002
  • Turpaev KT. Keap1-Nrf2 signaling pathway: Mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Biochem Moscow. 2013;78(2):111–26. Available from: http://link.springer.com/10.1134/S0006297913020016
  • Jadeja RN, Upadhyay KK, Devkar RV, Khurana S. Naturally occurring Nrf2 activators: Potential in treatment of liver injury. Oxid Med Cell Longev. 2016;2016:1–13. doi:10.1155/2016/3453926
  • Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Mol Aspects Med. 2011;32(4-6):234–46. [Internet]. Available from: doi:10.1016/j.mam.2011.10.006
  • Holt SM, Scemama JL, Panayiotidis MI, Georgakilas AG. Compromised repair of clustered DNA damage in the human acute lymphoblastic leukemia MSH2-deficient NALM-6 cells. Mutat Res - Genet Toxicol Environ Mutagen. 2009;674(1–2):123–30. doi:10.1016/j.mrgentox.2008.09.014
  • DeWeese TL, Shipman JM, Larrier NA, Buckley NM, Kidd LR, Groopman JD, Cutler RG, Te Riele H, Nelson WG. Mouse embryonic stem cells carrying one or two defective Msh2 alleles respond abnormally to oxidative stress inflicted by low-level radiation. Proc Natl Acad Sci. 1998;95(20):11915–20. [Internet]. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.95.20.11915
  • Colussi C, Parlanti E, Degan P, Aquilina G, Barnes D, Macpherson P, Karran P, Crescenzi M, Dogliotti E, Bignami M, et al. The Mammalian Mismatch Repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr Biol. 2002;12(11):912–8. doi:10.1016/S0960-9822(02)00863-1
  • Ahadova A, Gallon R, Gebert J, Ballhausen A, Endris V, Kirchner M, Stenzinger A, Burn J, von Knebel Doeberitz M, Bläker H, et al. Three molecular pathways model colorectal carcinogenesis in Lynch syndrome. Int J Cancer. 2018;143(1):139–50. doi:10.1002/ijc.31300
  • Felix R, Bodmer W, Fearnhead NS, van der Merwe L, Goldberg P, Ramesar RS. GSTM1 and GSTT1 polymorphisms as modifiers of age at diagnosis of hereditary nonpolyposis colorectal cancer (HNPCC) in a homogeneous cohort of individuals carrying a single predisposing mutation. Mutat Res - Fundam Mol Mech Mutagen. 2006;602(1–2):175–81. doi:10.1016/j.mrfmmm.2006.09.004
  • Reszka E, Jablonowski Z, Wieczorek E, Jablonska E, Krol MB, Gromadzinska J, Grzegorczyk A, Sosnowski M, Wasowicz W. Polymorphisms of NRF2 and NRF2 target genes in urinary bladder cancer patients. J Cancer Res Clin Oncol. 2014;140(10):1723–31. doi:10.1007/s00432-014-1733-0
  • Kamiza AB, You J-F, Wang W-C, Tang R, Chang C-Y, Chien H-T, Lai C-H, Chiu L-L, Lo T-P, Hung K-Y, et al. Polymorphisms of xenobiotic-metabolizing genes and colorectal cancer risk in patients with lynch syndrome: a retrospective cohort study in Taiwan. Environ Mol Mutagen. 2018;59(1):69–78. [Internet]. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=prem&NEWS=N&AN=28714190 doi:10.1002/em.22113
  • Pande M, Lynch PM, Hopper JL, Jenkins MA, Gallinger S, Haile RW, LeMarchand L, Lindor NM, Campbell PT, Newcomb PA, et al. Smoking and colorectal cancer in lynch syndrome: Results from the Colon Cancer Family Registry and the University of Texas M.D. Anderson Cancer Center. Clin Cancer Res. 2010;16(4):1331–9. doi:10.1158/1078-0432.CCR-09-1877
  • Watson P, Ashwathnarayan R, Lynch HT, Roy HK. Tobacco use and increased colorectal cancer risk in patients with hereditary nonpolyposis colorectal cancer (Lynch syndrome). Arch Intern Med. 2004;164(22):2429–31. Available from: http://archinte.jamanetwork.com/article.aspx?articleid=217777%5Cnpapers://5aecfcca-9729-4def-92fe-c46e5cd7cc81/Paper/p78548
  • Brand RM, Jones DD, Lynch HT, Brand RE, Watson P, Ashwathnayaran R, et al. Risk of colon cancer in hereditary non-polyposis colorectal cancer patients as predicted by fuzzy modeling: Influence of smoking. WJG. 2006;12(28):4485–91. [Internet]. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4125634&tool=pmcentrez&rendertype=abstract doi:10.3748/wjg.v12.i28.4485
  • Botma A, Nagengast FM, Braem MGM, Hendriks JCM, Kleibeuker JH, Vasen HFA, Kampman E. Body mass index increases risk of colorectal adenomas in men with lynch syndrome: The GEOLynch cohort study. JCO. 2010;28(28):4346–53. doi:10.1200/JCO.2010.28.0453
  • Fardet A, Druesne-Pecollo N, Touvier M, Latino-Martel P. Do alcoholic beverages, obesity and other nutritional factors modify the risk of familial colorectal cancer? A systematic review. Crit Rev Oncol Hematol. 2017;119:94–112. [Internet]. Available from: doi:10.1016/j.critrevonc.2017.09.001
  • Mons U, Muscat JE, Modesto J, Richie JP, Brenner H. Effect of smoking reduction and cessation on the plasma levels of the oxidative stress biomarker glutathione - Post-hoc analysis of data from a smoking cessation trial. Free Radic Biol Med [Internet]. 2016;91:172–7. Available from: doi:10.1016/j.freeradbiomed.2015.12.018
  • Liu J, Liang Q, Frost-Pineda K, Muhammad-Kah R, Rimmer L, Roethig H, Mendes P, Sarkar M. Relationship between biomarkers of cigarette smoke exposure and biomarkers of inflammation, oxidative stress, and platelet activation in adult cigarette smokers. Cancer Epidemiol Biomarkers Prev. 2011;20(8):1760–9. doi:10.1158/1055-9965.EPI-10-0987
  • Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10(8):455–65. [Internet]. Available from: http://www.nature.com/doifinder/10.1038/nrendo.2014.94
  • Cox A, West N, Cripps A. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol. 2015;3(3):207–15. Vol. 3, doi:10.1016/S2213-8587(14)70134-2
  • Mraz M, Haluzik M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol. 2014;222(3):113–27.
  • Miguchi M, Hinoi T, Tanakaya K, Yamaguchi T, Furukawa Y, Yoshida T, Tamura K, Sugano K, Ishioka C, Matsubara N, et al. Alcohol consumption and early-onset risk of colorectal cancer in Japanese patients with Lynch syndrome : a cross-sectional study conducted by the Japanese Society for Cancer of the Colon and Rectum. Surg Today. 2018;48(8):810–4. Available from: doi:10.1007/s00595-018-1654-7
  • Voskuil DW, Kampman E, Grubben MJAL, Kok FJ, Nagengast FM, Vasen HFA, van 't Veer P. Meat consumption and meat preparation in relation to colorectal adenomas among sporadic and HNPCC family patients in The Netherlands. Eur J Cancer. 2002;38(17):2300–8. doi:10.1016/S0959-8049(02)00455-0
  • Pussila M, Sarantaus L, Bebek DD, Valo S, Reyhani N, Ollila S. Cancer-predicting gene expression changes in colonic mucosa of western diet fed Mlh1 +/- mice. PLoS One. 2013;8(10):1–12.
  • Marie A, Neill O, Burrington CM, Gillaspie EA, Lynch DT, Horsman MJ. High-fat Western diet – induced obesity contributes to increased tumor growth in mouse models of human colon cancer. Nutr Res. 2016;36(12):1325–34. [Internet]. Available from: doi:10.1016/j.nutres.2016.10.005
  • Ringling RE, Gastecki ML, Woodford ML, Lum-Naihe KJ. Loss of Nlrp3 does not protect mice from western diet-induced adipose tissue inflammation and glucose intolerance. PLoS One. 2016;11 (9):1–17.
  • Heinonen I, Rinne P, Ruohonen ST, Ruohonen S, Ahotupa M, Savontaus E. The effects of equal caloric high fat and western diet on metabolic syndrome, oxidative stress and vascular endothelial function in mice. Acta Physiol. 2014;211(3):515–27. doi:10.1111/apha.12253
  • Naja F, Hwalla N, Itani L, Karam S, Mehio Sibai A, Nasreddine L. A Western dietary pattern is associated with overweight and obesity in a national sample of Lebanese adolescents (13-19 years): A cross-sectional study. Br J Nutr. 2015;114(11):1909–19. doi:10.1017/S0007114515003657
  • Senger DR, Li D, Jaminet SC, Cao S. Activation of the Nrf2 cell defense pathway by ancient foods: Disease prevention by important molecules and microbes lost from the modern western diet. PLoS One. 2016;11(2):e0148042–40. doi:10.1371/journal.pone.0148042
  • Myles IA. Fast food fever: reviewing the impacts of the western diet on immunity. Nutr J. 2014;13(1):1–17. doi:10.1186/1475-2891-13-61
  • Manzel A, Muller DN, Hafler DA, Erdman SE, Linker RA, Kleinewietfeld M. Role of “western diet” in inflammatory autoimmune diseases. Curr Allergy Asthma Rep. 2014;14(1):404. doi:10.1007/s11882-013-0404-6
  • Hosseini B, Berthon BS, Wark P, Wood LG. Effects of fruit and vegetable consumption on risk of asthma, wheezing and immune responses: a systematic review and meta-analysis. Nutrients. 2017;9(4):341. doi:10.3390/nu9040341
  • Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mech Ageing Dev. 2014;136–137:148–62. [Internet]. Available from: doi:10.1016/j.mad.2014.01.002
  • Dashti SG, Win AK, Hardikar SS, Glombicki SE, Mallenahalli S, Thirumurthi S, et al. Physical activity and the risk of colorectal cancer in Lynch syndrome. Int J Cancer. 2018;143(9): 2250–2260.
  • Wang P, Li CG, Qi Z, Cui D, Ding S. Acute exercise stress promotes Ref1/Nrf2 signalling and increases mitochondrial antioxidant activity in skeletal muscle. Exp Physiol. 2016;101(3):410–20. doi:10.1113/EP085493
  • Abreu CC, Cardozo L, Mafra D. Could physical exercises modulate Nrf2-Keap1 pathway in chronic kidney disease? Med Hypotheses. 2015;84(1):44–6. [Internet]. Available from: doi:10.1016/j.mehy.2014.11.013
  • Li T, He S, Liu S, Kong Z, Wang J, Zhang Y. Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation in mouse skeletal muscle. Free Radic Res. 2015;49(10):1269–74. doi:10.3109/10715762.2015.1066784
  • Korsager Larsen M, Matchkov VV. Hypertension and physical exercise: The role of oxidative stress. Medicina. 2016;52(1):19–27. [Internet]. Available from: doi:10.1016/j.medici.2016.01.005
  • Wu SH, Shu XO, Chow W-H, Xiang Y-B, Zhang X, Li H-L, Cai Q, Milne G, Ji B-T, Cai H, et al. Nonexercise physical activity and inflammatory and oxidative stress markers in women. J Women’s Heal. 2014;23(2):159–67. [Internet]. Available from: http://online.liebertpub.com/doi/abs/10.1089/jwh.2013.4456
  • Kruk J, Czerniak U. Physical Activity and its Relation to Cancer Risk: Updating the Evidence. Asian Pac J Cancer Prev. 2013;14(7):3993–4003. doi:10.7314/APJCP.2013.14.7.3993
  • Houghton CA, Fassett RG, Coombes JS. Sulforaphane and other nutrigenomic Nrf2 activators: can the clinician’s expectation be matched by the reality. Oxid Med Cell Longev. 2016;2016:1–17. doi:10.1155/2016/7857186
  • Sun W, Liu X, Zhang H, Song Y, Li T, Liu X, Liu Y, Guo L, Wang F, Yang T, et al. Epigallocatechin gallate upregulates NRF2 to prevent diabetic nephropathy via disabling KEAP1. Free Radic Biol Med. 2017;108:840–57. [Internet]. Available from: doi:10.1016/j.freeradbiomed.2017.04.365
  • Liu S, Tian L, Chai G, Wen B, Wang B. Targeting heme oxygenase-1 by quercetin ameliorates alcohol-induced acute liver injury via inhibiting NLRP3 inflammasome activation. Food Funct. 2018;9(8):4184–93. Available from: http://xlink.rsc.org/?DOI=C8FO00650D doi:10.1039/C8FO00650D
  • Maurya AK, Vinayak M. Modulation of PKC signaling and induction of apoptosis through suppression of reactive oxygen species and tumor necrosis factor receptor 1 (TNFR1): key role of quercetin in cancer prevention. Tumor Biol. 2015;36(11):8913–24. doi:10.1007/s13277-015-3634-5
  • Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer Lett. 2008;269(2):315–25. doi:10.1016/j.canlet.2008.03.046
  • Sherif IO. The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: Role of Nrf2/HO-1 pathway. Int Immunopharmacol. 2018;61:29–36. doi:10.1016/j.intimp.2018.05.007
  • Zhao CR, Gao ZH, Qu XJ. Nrf2-ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidemiol. 2010;34(5):523–33. [Internet]. Available from: doi:10.1016/j.canep.2010.06.012
  • Elshaer M, Chen Y, Wang XJ, Tang X. Resveratrol: An overview of its anti-cancer mechanisms. Life Sci. 2018;207:340–9. doi:10.1016/j.lfs.2018.06.028
  • Seyyedebrahimi S, Khodabandehloo H, Nasli Esfahani E, Meshkani R. The effects of resveratrol on markers of oxidative stress in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. Acta Diabetol. 2018;55(4):341–53. Available from: http://link.springer.com/10.1007/s00592-017-1098-3
  • Zhou X, Zhao Y, Wang J, Wang X, Chen C, Yin D, Zhao F, Yin J, Guo M, Zhang L, et al. Resveratrol represses estrogen-induced mammary carcinogenesis through NRF2-UGT1A8-estrogen metabolic axis activation. Biochem Pharmacol. 2018;155:252–63. doi:10.1016/j.bcp.2018.07.006
  • Lu C, Xu W, Zheng S. Nrf2 activation is required for curcumin to induce lipocyte phenotype in hepatic stellate cells. Biomed Pharmacother. 2017;95:1–10. [Internet]. Available from: doi:10.1016/j.biopha.2017.08.037
  • Huang Y, Li W, Su Z, Kong AT, State T. The complexity of the Nrf2 pathway: Beyond the antioxidant response. J Nutritional Biochem. 2015;26(12):1401–13. doi:10.1016/j.jnutbio.2015.08.001
  • Sarkar B, Dhiman M, Mittal S, Mantha AK. Curcumin revitalizes Amyloid beta (25–35)-induced and organophosphate pesticides pestered neurotoxicity in SH-SY5Y and IMR-32 cells via activation of APE1 and Nrf2. Metab Brain Dis. 2017;32(6):2045–61. doi:10.1007/s11011-017-0093-2
  • Kang JS, Kim G-Y, Kim BW, Choi YH. Antioxidative effects of diallyl trisulfide on hydrogen peroxide- induced cytotoxicity through regulation of nuclear factor-E2-related factor-mediated thioredoxin reductase 1 expression in C2C12 skeletal muscle myoblast cells. Gen Physiol Biophys. 2017;36(5):521–9.
  • Kim S, Lee H-G, Park S-A, Kundu JK, Keum Y-S, Cha Y-N, Na H-K, Surh Y-J. Keap1 cysteine 288 as a potential target for diallyl trisulfide-induced Nrf2 activation. PLoS One. 2014;9(1):e85984. doi:10.1371/journal.pone.0085984
  • Miltonprabu S, Sumedha NC, Senthilraja P. Diallyl trisulfide, a garlic polysulfide protects against As-induced renal oxidative nephrotoxicity, apoptosis and inflammation in rats by activating the Nrf2/ARE signaling pathway. Int Immunopharmacol. 2017;50:107–20. [Internet]. Available from: doi:10.1016/j.intimp.2017.06.011
  • Puccinelli MT, Stan SD. Dietary bioactive diallyl trisulfide in cancer prevention and treatment. Int J Mol Sci. 2017;18(8):13–5.
  • Han X-D, Zhang Y-Y, Wang K-L, Huang Y-P, Yang Z-B, Liu Z. The involvement of Nrf2 in the protective effects of (-)-Epigallocatechin-3-gallate (EGCG) on NaAsO2 -induced hepatotoxicity. Oncotarget. 2017;8(39):65302–12. [Internet]. Available from: http://www.oncotarget.com/fulltext/18582
  • Mi Y, Zhang W, Tian H, Li R, Huang S, Li X, Qi G, Liu X. EGCG evokes Nrf2 nuclear translocation and dampens PTP1B expression to ameliorate metabolic misalignment under insulin resistance condition. Food Funct. 2018;9(3):1510–23. doi:10.1039/C7FO01554B
  • Pan C, Zhou S, Wu J, Liu L, Song Y, Li T, Ha L, Liu X, Wang F, Tian J, et al. NRF2 plays a critical role in both self and EGCG protection against diabetic testicular damage. Oxid Med Cell Longev. 2017;2017:1–13. doi:10.1155/2017/3172692
  • Antony ML, Singh SV. Molecular mechanisms and targets of cancer chemoprevention by garlic-derived bioactive compound diallyl trisulfide. Indian J. Exp. Biol. 2011;49(11):805–16.
  • Ma HB, Huang S, Yin XR, Zhang Y, Di ZL. Apoptotic pathway induced by diallyl trisulfide in pancreatic cancer cells. WJG. 2014;20(1):193–203. doi:10.3748/wjg.v20.i1.193
  • Li W, Tian H, Li L, Li S, Yue W, Chen Z, Qi L, Hu W, Zhu Y, Hao B, et al. Diallyl trisulfide induces apoptosis and inhibits proliferation of A549 cells in vitro and in vivo. Acta Biochim Biophys Sin. 2012;44(7):577–83. doi:10.1093/abbs/gms033
  • Shin DY, Kim GY, Hwang HJ, Kim WJ, Choi YH. Diallyl trisulfide-induced apoptosis of bladder cancer cells is caspase-dependent and regulated by PI3K/Akt and JNK pathways. Environ Toxicol Pharmacol. 2014;37(1):74–83. [Internet]. Available from: doi:10.1016/j.etap.2013.11.002
  • Marsh A, Eslick EM, Eslick GD. Does a diet low in FODMAPs reduce symptoms associated with functional gastrointestinal disorders? A comprehensive systematic review and meta-analysis. Eur J Nutr. 2016;55(3):897–906. doi:10.1007/s00394-015-0922-1
  • Kodali RT, Eslick GD. Meta-analysis: Does garlic intake reduce risk of gastric cancer?. Nutr Cancer. 2015;67(1):1–11. doi:10.1080/01635581.2015.967873
  • Hu Y, McIntosh GH, Le Leu RK, Somashekar R, Meng XQ, Gopalsamy G, Bambaca L, McKinnon RA, Young GP. Supplementation with Brazil nuts and green tea extract regulates targeted biomarkers related to colorectal cancer risk in humans. Br J Nutr. 2016;116(11):1901–11. doi:10.1017/S0007114516003937
  • Bettuzzi S, Brausi M, Rizzi F, Castagnetti G, Peracchia G, Corti A. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: A preliminary report from a one-year proof-of-principle study. Cancer Res. 2006;66(2):1234–40. doi:10.1158/0008-5472.CAN-05-1145
  • Gee JR, Saltzstein DR, Kim K, Kolesar J, Huang W, Havighurst TC, Wollmer BW, Stublaski J, Downs T, Mukhtar H, et al. A phase II randomized, double-blind, presurgical trial of polyphenon e in bladder cancer patients to evaluate pharmacodynamics and bladder tissue biomarkers. Cancer Prev Res. 2017;10(5):298–307. doi:10.1158/1940-6207.CAPR-16-0167
  • Lazzeroni M, Guerrieri-Gonzaga A, Gandini S, Johansson H, Serrano D, Cazzaniga M, Aristarco V, Macis D, Mora S, Caldarella P, et al. A presurgical study of lecithin formulation of green tea extract in women with early breast cancer. Cancer Prev Res. 2017;10(6):363–9. doi:10.1158/1940-6207.CAPR-16-0298
  • Boots AW, Haenen G, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585(2-3):325–37. doi:10.1016/j.ejphar.2008.03.008
  • Zheng YZ, Deng G, Liang Q, Chen DF, Guo R, Lai RC. Antioxidant activity of quercetin and its glucosides from propolis: a theoretical study. Sci Rep. 2017;7(1):1–11. Available from: doi:10.1038/s41598-017-08024-8
  • Aliaga C, Lissi E. a. Comparison of the free radical scavenger activities of quercetin and rutin — An experimental and theoretical study. Can J Chem. 2004;82(12):1668–73. doi:10.1139/v04-151
  • Sun Z, Huang Z, Zhang DD. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One. 2009;4(8):e6588. doi:10.1371/journal.pone.0006588
  • Bobe G, Weinstein SJ, Albanes D, Hirvonen T, Ashby J, Taylor PR, Virtamo J, Stolzenberg-Solomon RZ. Flavonoid intake and risk of pancreatic cancer in male smokers (Finland). Cancer Epidemiol Biomarkers Prev. 2008;17(3):553–62. doi:10.1158/1055-9965.EPI-07-2523
  • Bobe G, Albert PS, Sansbury LB, Lanza E, Schatzkin A, Colburn NH, Cross AJ. Interleukin-6 as a potential indicator for prevention of high-risk adenoma recurrence by dietary flavonols in the polyp prevention trial. Cancer Prev Res. 2010;3(6):764–75. doi:10.1158/1940-6207.CAPR-09-0161
  • Cruz–Correa M, Shoskes DA, Sanchez P, Zhao R, Hylind LM, Wexner SD, Giardiello FM. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clin Gastroenterol Hepatol. 2006;4(8):1035–8. doi:10.1016/j.cgh.2006.03.020
  • Morrow DMP, Fitzsimmons PEE, Chopra M, McGlynn H. Dietary supplementation with the anti-tumour promoter quercetin: Its effects on matrix metalloproteinase gene regulation. Mutat Res - Fundam Mol Mech Mutagen. 2001;480-481:269–76. doi:10.1016/S0027-5107(01)00184-1
  • Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, Baker J, Kerr DJ. Phase I clinical trial of the flavonoid tyrosine kinase quercetin : pharmacokinetics for in vivo. Clin. Cancer Res. 1996;2(4):659–68. (April):
  • Li YR, Li S, Lin CC. Effect of resveratrol and pterostilbene on aging and longevity. BioFactors. 2018;44(1):69–82. doi:10.1002/biof.1400
  • Marques BCAA, Trindade M, Aquino JCF, Cunha AR, Gismondi RO, Neves MF, Oigman W. Beneficial effects of acute trans-resveratrol supplementation in treated hypertensive patients with endothelial dysfunction. Clin Exp Hypertens. 2018;40(3):218–23. [Internet]. Available from: https://www.tandfonline.com/doi/full/10.1080/10641963.2017.1288741
  • Pan MH, Wu JC, Ho CT, Lai CS. Antiobesity molecular mechanisms of action: Resveratrol and pterostilbene. BioFactors. 2018;44(1):50–60. doi:10.1002/biof.1409
  • Peñalver P, Belmonte-Reche E, Adán N, Caro M, Mateos-Martín ML, Delgado M, González-Rey E, Morales JC. Alkylated resveratrol prodrugs and metabolites as potential therapeutics for neurodegenerative diseases. Eur J Med Chem. 2018;146:123–38. doi:10.1016/j.ejmech.2018.01.037
  • Espinoza JL, Trung LQ, Inaoka PT, Yamada K, An DT, Mizuno S, Nakao S, Takami A. The repeated administration of resveratrol has measurable effects on circulating T-cell subsets in humans. Oxid Med Cell Longev. 2017;2017:1–10. doi:10.1155/2017/6781872
  • Khanduja KL, Bhardwaj A. Stable free radical and antiperoxide properties of resveratrol compared in vitro with some other bioflavoids. Indian J Biochem Biophys. 2003;40:416–22.
  • Patel KR, Brown VA, Jones DJL, Britton RG, Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA, et al. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res. 2010;70(19):7392–9. doi:10.1158/0008-5472.CAN-10-2027
  • Holcombe RF, Nguyen Martinez Stamos Moyer Planutis, et al. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res. 2009;1:25.
  • Howells LM, Berry DP, Elliott PJ, Jacobson EW, Hoffmann E, Hegarty B, Brown K, Steward WP, Gescher AJ. Phase I randomized, double-blind pilot study of micronized resveratrol (SRT501) in patients with hepatic metastases - safety, pharmacokinetics, and pharmacodynamics. Cancer Prev Res. 2011;4(9):1419–25. doi:10.1158/1940-6207.CAPR-11-0148
  • Mantzorou M, Pavlidou E, Vasios G, Tsagalioti E, Giaginis C. Effects of curcumin consumption on human chronic diseases: a narrative review of the most recent clinical data. Phyther Res. 2018;32(6):957–75. doi:10.1002/ptr.6037
  • Barzegar A. The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chem. 2012;135(3):1369–76. [Internet]. Available from: doi:10.1016/j.foodchem.2012.05.070
  • Lee W-H, Loo C-Y, Bebawy M, Luk F, Mason R, Rohanizadeh R. Curcumin and its Derivatives: Their Application in Neuropharmacology and Neuroscience in the 21st Century. Curr Neuropharmacol. 2013;11(4):338–78. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1570-159X&volume=11&issue=4&spage=338 doi:10.2174/1570159X11311040002
  • Deck LM, Hunsaker LA, Vander Jagt TA, Whalen LJ, Royer RE, Vander Jagt DL. Vander Jagt DL. Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. Eur J Med Chem. 2018;143:854–65. [Internet]. Available from:doi:10.1016/j.ejmech.2017.11.048
  • He Z-Y, Shi C-B, Wen H, Li F-L, Wang B-L, Wang J. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest. 2011;29(3):208–13. [Internet]. Available from: http://www.tandfonline.com/doi/full/10.3109/07357907.2010.550592
  • Garcea G, Berry DP, Jones DJL, Singh R, Dennison AR, Farmer PB. Consumption of the putative chemopreventive agent curcumin by cancer patients : assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Prev Biomarkers. 2005;14: 120-125.
  • Ahmad N, Mukhtar H. Antioxidants meet molecular targets for cancer prevention and therapeutics. Antioxid Redox Signal. 2013;19(2):85–8. [Internet]. Available from: http://online.liebertpub.com/doi/abs/10.1089/ars.2013.5299
  • Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, et al. Phase I clinical trial of oral curcumin : biomarkers of systemic activity and compliance. Clin Cancer Res. 2004;10(20):6847–54. doi:10.1158/1078-0432.CCR-04-0744
  • Martins T, Colaço B, Venâncio C, Pires MJ, Oliveira PA, Rosa E, Antunes LM. Potential effects of sulforaphane to fight obesity. J Sci Food Agric. 2018;98(8):2837–44. doi:10.1002/jsfa.8898
  • Malaguti M, Angeloni C, Hrelia S. Nutraceutical bioactive compounds promote healthspan counteracting cardiovascular diseases. J Am Coll Nutr. 2015;34(sup1):22–7. doi:10.1080/07315724.2015.1080107
  • Traka M, Gasper AV, Melchini A, Bacon JR, Needs PW, Frost V, Chantry A, Jones AME, Ortori CA, Barrett DA, et al. Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate. PLoS One. 2008;3(7):e2568. doi:10.1371/journal.pone.0002568
  • Egner PA, Chen J-G, Zarth AT, Ng DK, Wang J-B, Kensler KH, Jacobson LP, Munoz A, Johnson JL, Groopman JD, et al. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res. 2014;7(8):813–23. doi:10.1158/1940-6207.CAPR-14-0103
  • Axelsson A, Tubbs E, Mecham B, Chacko S, Nenonen H, Tang Y, et al. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med. 2017;9(394):4477. [Internet]. Available from: http://0-stm.sciencemag.org.wam.leeds.ac.uk/content/scitransmed/9/394/eaah4477.full.pdf%0A http://0-ovidsp.ovid.com.wam.leeds.ac.uk/ovidweb.cgi?T=JS&PAGE=reference&D=emexb&NEWS=N&AN=616869431
  • Kikuchi M, Ushida Y, Shiozawa H, Umeda R, Tsuruya K, Aoki Y, et al. Sulforaphane-rich broccoli sprout extract improves hepatic abnormalities in male subjects. WJG. 2015;21(43):12457–67. doi:10.3748/wjg.v21.i43.12457
  • Cipolla BG, Mandron E, Lefort JM, Coadou Y, Della Negra E, Corbel L, Le Scodan R, Azzouzi AR, Mottet N. Effect of sulforaphane in men with biochemical recurrence after radical prostatectomy. Cancer Prev Res. 2015;8(8):712–9. doi:10.1158/1940-6207.CAPR-14-0459
  • Bauman JE, Zang Y, Sen M, Li C, Wang L, Egner PA, Fahey JW, Normolle DP, Grandis JR, Kensler TW, et al. Prevention of carcinogen-induced oral cancer by sulforaphane. Cancer Prev Res. 2016;9(7):547–57. doi:10.1158/1940-6207.CAPR-15-0290

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.