180
Views
10
CrossRef citations to date
0
Altmetric
Article

Quercetin Triggers Induction of Apoptotic and Lysosomal Death of Sensitive and Multidrug Resistant Leukaemia HL60 Cells

&
Pages 484-501 | Received 05 Sep 2019, Accepted 28 Mar 2020, Published online: 24 Apr 2020

References

  • Borst P, Jonkers J, Rottenberg S. What makes tumors multidrug resistant? Cell Cycle. 2007;6(22):2782–7. doi:10.4161/cc.6.22.4936
  • Lage H. An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci. 2008;65(20):3145–67. doi:10.1007/s00018-008-8111-5
  • Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract. 2005;14(1):35–48. doi:10.1159/000086183
  • Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol. 2010;46(3):308–16. doi:10.1007/s12033-010-9321-2
  • Kampa M, Nifli AP, Notas G, Castanas E. Polyphenols and cancer cell growth. Rev Physiol Biochem Pharmacol. 2007;159:79–113. doi:10.1007/112_2006_0702
  • Afzal M, Safer AM, Menon M. Green tea polyphenols and their potential role in health and disease. Inflammopharmacology. 2015;23(4):151–61. doi:10.1007/s10787-015-0236-1
  • Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2(12):1231–46. doi:10.3390/nu2121231
  • Ciolino HP, Daschner PJ, Yeh GC. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially. Biochem J. 1999;340(3):715–22. doi:10.1042/0264-6021:3400715
  • Bode AM, Dong Z. Signal transduction pathways: targets for green and black tea polyphenols. J Biochem Mol Biol. 2003;36(1):66–77. doi:10.5483/BMBRep.2003.36.1.066
  • Ramos S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res. 2008;52(5):507–26. doi:10.1002/mnfr.200700326
  • Sen T, Dutta A, Chatterjee A. Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFκB and AP-1 in the human breast cancer cell line MDA-MB-231. Anticancer Drugs. 2010;21(6):632–44. doi:10.1097/cad.0b013e32833a4385
  • Tewari D, Nabavi SF, Nabavi SM, Sureda A, Farooqi AA, Atanasov AG, Vacca RA, Sethi G, Bishayee A. Targeting activator protein 1 signaling pathway by bioactive natural agents: possible therapeutic strategy for cancer prevention and intervention. Pharmacol Res. 2018;128:366–75. doi:10.1016/j.phrs.2017.09.014
  • Jeong C-H, Joo SH. Downregulation of reactive oxygen species in apoptosis. J Cancer Prev. 2016;21(1):13–20. doi:10.15430/JCP.2016.21.1.13
  • Neuwirthová J, Gál B, Smilek P, Urbánková P. Potential of the flavonoid quercetin to prevent and treat cancer—current status of research. Klin Onkol. 2018;31(3):184–90. doi:10.14735/amko2018184
  • Chen C, Zhou J, Ji C. Quercetin: a potential drug to reverse multidrug resistance. Life Sci. 2010;87(11-12):333–8. doi:10.1016/j.lfs.2010.07.004
  • Maso V, Calgarotto AK, Franchi GC, Nowill AE, Filho PL, Vassallo J, Saad STO. Multitarget effects of quercetin in leukemia. Cancer Prev Res. 2014;7(12):1240–50. doi:10.1158/1940-6207.CAPR-13-0383
  • Khan F, Niaz K, Maqbool F, Ismail Hassan F, Abdollahi M, Nagulapalli Venkata K, Nabavi S, Bishayee A. Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients. 2016;8(9):529. doi:10.3390/nu8090529
  • Rauf A, Imran M, Khan IA, Ur-Rehman M, Gilani SA, Mehmood Z, Mubarak MS. Anticancer potential of quercetin: a comprehensive review. Phytother Res. 2018;32(11):2109–30. doi:10.1002/ptr.6155
  • Murtaza I, Marra G, Schlapbach R, Patrignani A, Künzli M, Wagner U, Sabates J, Dutt A. A preliminary investigation demonstrating the effect of quercetin on the expression of genes related to cell-cycle arrest, apoptosis and xenobiotic metabolism in human CO115 colon-adenocarcinoma cells using DNA microarray. Biotechnol Appl Biochem. 2006;45(1):29–36. doi:10.1042/BA20060044
  • Chou C-C, Yang J-S, Lu H-F, Ip S-W, Lo C, Wu C-C, Lin J-P, Tang N-Y, Chung J-G, Chou M-J, et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells. Arch Pharm Res. 2010;33(8):1181–91. doi:10.1007/s12272-010-0808-y
  • Vidya Priyadarsini R, Senthil Murugan R, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol. 2010;649(1-3):84–91. doi:10.1016/j.ejphar.2010.09.020
  • Yuan Z, Long C, Junming T, Qihuan L, Youshun Z, Chan Z. Quercetin-induced apoptosis of HL-60 cells by reducing PI3K/Akt. Mol Biol Rep. 2012;39(7):7785–93. doi:10.1007/s11033-012-1621-0
  • Youn H, Jeong J-C, Jeong YS, Kim E-J, Um S-J. Quercetin potentiates apoptosis by inhibiting nuclear factor-kappaB signaling in H460 lung cancer cells. Biol Pharm Bull. 2013;36:944–51.
  • Chang Y-F, Chi C-W, Wang J-J. Reactive oxygen species production is involved in quercetin-induced apoptosis in human hepatoma cells. Nutr Cancer. 2006;55(2):201–9. doi:10.1207/s15327914nc5502_12
  • Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999;35(10):1517–25. doi:10.1016/S0959-8049(99)00168-9
  • Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). J Nutr. 2006;136(11):2715–21. doi:10.1093/jn/136.11.2715
  • Mateus PG, Wolf VG, Borges MS, Ximenes Valdeci F. Quercetin: prooxidant effect and apoptosis in cancer. In: Atta-ur-Rahman, editor. Studies in natural products chemistry. Vol. 58. Amsterdam (Netherlands): Elsevier; 2018. p. 265–88.
  • Sakao K, Fujii M, Hou DX. Clarification of the role of quercetin hydroxyl groups in superoxide generation and cell apoptosis by chemical modification. Biosci Biotechnol Biochem. 2009;73(9):2048–53. doi:10.1271/bbb.90253
  • Lee W-J, Hsiao M, Chang J-L, Yang S-F, Tseng T-H, Cheng C-W, Chow J-M, Lin K-H, Lin Y-W, Liu C-C, et al. Quercetin induces mitochondrial-derived apoptosis via reactive oxygen species-mediated ERK activation in HL-60 leukemia cells and xenograft. Arch Toxicol. 2015;89(7):1103–17. doi:10.1007/s00204-014-1300-0
  • Bishayee K, Ghosh S, Mukherjee A, Sadhukhan R, Mondal J, Khuda-Bukhsh AR. Quercetin induces cytochrome-c release and ROS accumulation to promote apoptosis and arrest the cell cycle in G2/M, in cervical carcinoma: signal cascade and drug-DNA interaction. Cell Prolif. 2013;46(2):153–63. doi:10.1111/cpr.12017
  • Trincheri NF, Nicotra G, Follo C, Castino R, Isidoro C. Resveratrol induces cell death in colorectal cancer cells by a novel pathway involving lysosomal cathepsin D. Carcinogenesis. 2007;28(5):922–31. doi:10.1093/carcin/bgl223
  • Zhang Y, Yang N-D, Zhou F, Shen T, Duan T, Zhou J, Shi Y, Zhu X-Q, Shen H-M. (-)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PLoS One. 2012;7(10):e46749. doi:10.1371/journal.pone.0046749
  • Chen Q-Y, Shi J-G, Yao Q-H, Jiao D-M, Wang Y-Y, Hu H-Z, Wu Y-Q, Song J, Yan J, Wu L-J, et al. Lysosomal membrane permeabilization is involved in curcumin-induced apoptosis of A549 lung carcinoma cells. Mol Cell Biochem. 2012;359(1-2):389–98. doi:10.1007/s11010-011-1033-9
  • Mena S, Rodríguez ML, Ponsoda X, Estrela JM, Jäättela M, Ortega AL. Pterostilbene-induced tumor cytotoxicity: a lysosomal membrane permeabilization-dependent mechanism. PLoS One. 2012;7(9):e44524. doi:10.1371/journal.pone.0044524
  • Lahiri DK, Schnabel B. DNA isolation by a rapid method from human blood samples: effects of MgCl2, EDTA, storage time, and temperature on DNA yield and quality. Biochem Genet. 1993;31(7-8):321–8. doi:10.1007/BF00553174
  • Nowak R, Tarasiuk J. Anthraquinone antitumour agents, doxorubicin, pirarubicin and benzoperimidine BP1, trigger caspase-3/caspase-8-dependent apoptosis of leukaemia sensitive HL60 and resistant HL60/VINC and HL60/DOX cells. Anticancer Drugs. 2012;23(4):380–92. doi:10.1097/CAD.0b013e32834f8ab4
  • Jäättelä M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene. 2004;23(16):2746–56. doi:10.1038/sj.onc.1207513
  • Mellor HR, Callaghan R. Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology. 2008;81(4):275–300. doi:10.1159/000115967
  • Takeuchi R, Hoshijima H, Nagasaka H, Chowdhury SA, Kikuchi H, Kanda Y, Kunii S, Kawase M, Sakagami H. Induction of non-apoptotic cell death by morphinone in human promyelocytic leukemia HL-60 cells. Anticancer Res. 2006;26(5A):3343–8.
  • Bursch W, Karwan A, Mayer M, Dornetshuber J, Fröhwein U, Schulte-Hermann R, Fazi B, Di Sano F, Piredda L, Piacentini M, et al. Cell death and autophagy: cytokines, drugs, and nutritional factors. Toxicology. 2008;254(3):147–57.: doi:10.1016/j.tox.2008.07.048
  • Wu JC, Lai CS, Badmaev V, Nagabhushanam K, Ho CT, et al. Tetrahydrocurcumin, a major metabolite of curcumin, induced autophagic cell death through coordinative modulation of PI3K/Akt-mTOR and MAPK signaling pathways in human leukemia HL-60 cells. Mol Nutr Food Res. 2011;55:1–9.:
  • Groth-Pedersen L, Jäättelä M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett. 2013;332(2):265–74. doi:10.1016/j.canlet.2010.05.021
  • Fehrenbacher N, Jäättelä M. Lysosomes as targets for cancer therapy. Cancer Res. 2005;65(8):2993–5. doi:10.1158/0008-5472.CAN-05-0476
  • Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434–51. doi:10.1038/onc.2008.310
  • Kirkegaard T, Jäättelä M. Lysosomal involvement in cell death and cancer. Biochim Biophys Acta. 2009;1793(4):746–54. doi:10.1016/j.bbamcr.2008.09.008
  • Turk B, Turk V. Lysosomes as “suicide bags” in cell death: myth or reality? J Biol Chem. 2009;284(33):21783–7. doi:10.1074/jbc.R109.023820
  • Mileo AM, Miccadei S. Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxid Med Cell Longev. 2016;2016:1–17. doi:10.1155/2016/6475624
  • Costa C, Tsatsakis A, Mamoulakis C, Teodoro M, Briguglio G, Caruso E, Tsoukalas D, Margina D, Dardiotis E, Kouretas D, et al. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem Toxicol. 2017;110:286–99. doi:10.1016/j.fct.2017.10.023
  • Maruszewska A, Kostrzewa-Nowak D, Adamus J, Czupryńska K, Maryniak D, Gebicki J, Tarasiuk J. The ability of selected pyridinium salts to increase the cytotoxic activity of vincristine but not doxorubicin towards sensitive and multidrug resistant promyelocytic leukaemia HL60 cells. J Pharm Pharmacol. 2008;60(5):647–53. doi:10.1211/jpp.60.5.0011
  • Kostrzewa-Nowak D, Tarasiuk J. Bioreductive activation of mitoxantrone by NADPH cytochrome P450 reductase does not change its apoptotic stimuli properties in regard to sensitive and multidrug resistant leukaemia HL60 cells. Eur J Pharmacol. 2013;721(1-3):141–50. doi:10.1016/j.ejphar.2013.09.041
  • Mertens-Talcott SU, Bomser JA, Romero C, Talcott ST, Percival SS. Ellagic acid potentiates the effect of quercetin on p21waf1/cip1, p53, and MAP-kinases without affecting intracellular generation of reactive oxygen species in vitro. J Nutr. 2005;135(3):609–14. doi:10.1093/jn/135.3.609
  • Kalinina EV, Ivanova-Radkevich VI, Chernov NN. Role of microRNAs in the regulation of redox-dependent processes. Biochemistry Moscow. 2019;84(11):1233–46. doi:10.1134/S0006297919110026
  • Engedal N, Žerovnik E, Rudov A, Galli F, Olivieri F, Procopio AD, Rippo MR, Monsurrò V, Betti M, Albertini MC, et al. From oxidative stress damage to pathways, networks, and autophagy via microRNAs. Oxid Med Cell Longev. 2018;2018:1–16. doi:10.1155/2018/4968321
  • He J, Jiang BH. Interplay between reactive oxygen species and microRNAs in cancer. Curr Pharmacol Rep. 2016;2(2):82–90. doi:10.1007/s40495-016-0051-4
  • Wang C, Ku P, Nie X, Bao S, Wang Z, Li K. Effects of simvastatin on the PXR signaling pathway and the liver histology in Mugilogobius abei. Sci Total Environ. 2019;651:399–409. doi:10.1016/j.scitotenv.2018.09.133
  • Tsang TY, Tang WY, Chan JYW, Co NN, Au Yeung CL, Yau PL, Kong SK, Fung KP, Kwok TT. P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR-16 and Bcl-2 expressions in hepatocellular carcinoma cells. Apoptosis. 2011;16(5):524–35. doi:10.1007/s10495-011-0581-5
  • Ramos AM, Aller P. Quercetin decreases intracellular GSH content and potentiates the apoptotic action of the antileukemic drug arsenic trioxide in human leukemia cell lines. Biochem Pharmacol. 2008;75(10):1912–23. doi:10.1016/j.bcp.2008.02.007
  • Li C, Zhang WJ, Choi J, Frei B. Quercetin affects glutathione levels and redox ratio in human aortic endothelial cells not through oxidation but formation and cellular export of quercetin-glutathione conjugates and upregulation of glutamate-cysteine ligase. Redox Biol. 2016;9:220–8. doi:10.1016/j.redox.2016.08.012
  • Jones DJL, Lamb JH, Verschoyle RD, Howells LM, Butterworth M, Lim CK, Ferry D, Farmer PB, Gescher AJ. Characterisation of metabolites of the putative cancer chemopreventive agent quercetin and their effect on cyclo-oxygenase activity. Br J Cancer. 2004;91(6):1213–9. doi:10.1038/sj.bjc.6602091
  • Spencer JP, Kuhnle GG, Williams RJ, Rice-Evans C. Intracellular metabolism and bioactivity of quercetin and its in vivo metabolites. Biochem J. 2003;372(1):173–81. doi:10.1042/bj20021972
  • Huang Z, Pinto JT, Deng H, Richie JP, Jr. Inhibition of caspase-3 activity and activation by protein glutathionylation. Biochem Pharmacol. 2008;75(11):2234–44. doi:10.1016/j.bcp.2008.02.026
  • Anathy V, Roberson EC, Guala AS, Godburn KE, Budd RC, Janssen-Heininger YMW. Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death. Antioxid Redox Signal. 2012;16(6):496–505. doi:10.1089/ars.2011.4281
  • Dalle-Donne I, Colombo G, Gagliano N, Colombo R, Giustarini D, Rossi R, Milzani A. S-glutathiolation in life and death decisions of the cell. Free Radic Res. 2011;45(1):3–15. doi:10.3109/10715762.2010.515217
  • Lin KT, Xue JY, Sun FF, Wong PYK. Reactive oxygen species participate in peroxynitrite-induced apoptosis in HL-60 cells. Biochem Biophys Res Commun. 1997;230(1):115–9. doi:10.1006/bbrc.1996.5897
  • Baek YM, Hwang HJ, Kim SW, Hwang HS, Lee SH, Kim JA, Yun JW. A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics. 2008;8(22):4748–67. doi:10.1002/pmic.200800094
  • Collins JA, Schandl CA, Young KK, Vesely J, Willingham MC. Major DNA fragmentation is a late event in apoptosis. J Histochem Cytochem. 1997;45(7):923–34. doi:10.1177/002215549704500702
  • Wolf D, Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci USA. 1985;82(3):790–4. doi:10.1073/pnas.82.3.790
  • Sigal A, Rotter V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 2000;60(24):6788–93.
  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: New online mutation analysis and recommendations to users. Hum Mutat. 2002;19(6):607–14. doi:10.1002/humu.10081
  • Giovannini C, Masella R. Role of polyphenols in cell death control. Nutr Neurosci. 2012;15(3):134–49. doi:10.1179/1476830512Y.0000000006
  • Pozo-Guisado E, Merino JM, Mulero-Navarro S, Lorenzo-Benayas MJ, Centeno F, Alvarez-Barrientos A, Salguero PMF. Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-κB. Int J Cancer. 2005;115(1):74–84. doi:10.1002/ijc.20856
  • Kumar S, Eroglu E, Stokes JA, Scissum-Gunn K, Saldanha SN, Singh UP, Manne U, Ponnazhagan S, Mishra MK. Resveratrol induces mitochondria-mediated, caspase-independent apoptosis in murine prostate cancer cells. Oncotarget. 2017;8(13):20895–908. doi:10.18632/oncotarget.14947
  • Kapoor S. Luteolin and its inhibitory effect on tumor growth in systemic malignancies. Exp Cell Res. 2013;319(6):777–8. doi:10.1016/j.yexcr.2013.01.006
  • Reddivari L, Vanamala J, Chintharlapalli S, Safe SH, Miller JC. Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis. 2007;28(10):2227–35. doi:10.1093/carcin/bgm117
  • Khorsandi L, Saki G, Bavarsad N, Mombeini M. Silymarin induces a multi-targeted cell death process in the human colon cancer cell line HT-29. Biomed Pharmacother. 2017;94:890–7. doi:10.1016/j.biopha.2017.08.015
  • Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011;10(9):1533–41. doi:10.1158/1535-7163.MCT-11-0047
  • Serrano-Puebla A, Boya P. Lysosomal membrane permeabilization as a cell death mechanism in cancer cells. Biochem Soc Trans. 2018;46(2):207–15. doi:10.1042/BST20170130
  • Maruszewska A, Tarasiuk J. Antitumour effects of selected plant polyphenols, gallic acid and ellagic acid, on sensitive and multidrug-resistant leukaemia HL60 cells. Phytother Res. 2019;33(4):1208–21. doi:10.1002/ptr.6317
  • Bielak-Zmijewska A, Piwocka K, Magalska A, Sikora E. P-glycoprotein expression does not change the apoptotic pathway induced by curcumin in HL-60 cells. Cancer Chemother Pharmacol. 2004;53(2):179–85. doi:10.1007/s00280-003-0705-x
  • Choi MR, Najafi F, Safa AR, Drexler HCA. Analysis of changes in the proteome of HL-60 promyeloid leukemia cells induced by the proteasome inhibitor PSI. Biochem Pharmacol. 2008;75(12):2276–1288. doi:10.1016/j.bcp.2008.03.017
  • Nowak R, Tarasiuk J. Retaining cytotoxic activity of anthrapyridone CO1 against multidrug resistant cells is related to the ability to induce concomitantly apoptosis and lysosomal death of leukaemia HL60/VINC and HL60/DOX cells. J Pharm Pharmacol. 2013;65(6):855–67. doi:10.1111/jphp.12042
  • Mediavilla-Varela M, Pacheco FJ, Almaguel F, Perez J, Sahakian E, Daniels TR, Leoh L, Padilla A, Wall NR, Lilly MB, et al. Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75. Mol Cancer. 2009;8(1):68.,.: doi:10.1186/1476-4598-8-68
  • Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M, Jäättelä M. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol. 2001;153(5):999–1010. doi:10.1083/jcb.153.5.999
  • Kågedal K, Johansson U, Öllinger K. The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J. 2001;15(9):1592–4. doi:10.1096/fj.00-0708fje
  • Paquet C, Sané AT, Beauchemin M, Bertrand R. Caspase- and mitochondrial dysfunction-dependent mechanisms of lysosomal leakage and cathepsin B activation in DNA damage-induced apoptosis. Leukemia. 2005;19(5):784–91. doi:10.1038/sj.leu.2403717
  • Johansson A-C, Appelqvist H, Nilsson C, Kågedal K, Roberg K, Öllinger K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis. 2010;15(5):527–40. doi:10.1007/s10495-009-0452-5
  • Aits S, Jaattela M. Lysosomal cell death at a glance. J Cell Sci. 2013;126(9):1905–12. doi:10.1242/jcs.091181

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.