325
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Antimicrobial, Antioxidant, and Anti-Tumor Activities of Sargassum linearifolium and Cystoseira crinita from Egyptian Mediterranean Coast

ORCID Icon, ORCID Icon & ORCID Icon
Pages 829-844 | Received 08 Oct 2019, Accepted 28 Apr 2020, Published online: 14 May 2020

References

  • Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase. No. p. 11. [Internet]. Lyon, France: International Agency for Research on Cancer, 2013.
  • Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, Sung B, Aggarwal BB. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25(9):2097–116. doi:10.1007/s11095-008-9661-9
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.
  • Abourriche A, Charrouf M, Berrada M, Bennamara A, Chaib N, Francisco C. Antimicrobial activities and cytotoxicity of the brown algae Cystoseira tamariscifolia. Fitoterapia. 1999;70(6):611–4. doi:10.1016/S0367-326X(99)00088-X
  • Zubia M, Fabre MS, Kerjean V, Lann KL, Stiger-Pouvreau V, Fauchon M, Deslandes E. Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. Food Chem. 2009;116(3):693–701. doi:10.1016/j.foodchem.2009.03.025
  • Correia-da-Silva M, Sousa E, Pinto MMM, Kijjoa A. Anticancer and cancer preventive compounds from edible marine organisms. Semin Cancer Biol. 2017;46:55–64. doi:10.1016/j.semcancer.2017.03.011
  • Alves C, Silva J, Pinteus S, Gaspar H, Alpoim MC, Botana LM, Pedrosa R. From marine origin to therapeutics: the antitumor potential of marine algae-derived compounds. Front Pharmacol. 2018;9:777doi:10.3389/fphar.2018.00777
  • Ercolano G, De Cicco P, Ianaro A. New drugs from the sea: pro-apoptotic activity of sponges and algae derived compounds. Mar Drugs. 2019;17(1):31. doi:10.3390/md17010031
  • Rodrigues D, Freitas AC, Pereira L, Rocha-Santos TAP, Vasconcelos MW, Roriz M, Rodríguez-Alcalá LM, Gomes AMP, Duarte AC. Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem. 2015;183:197–207. doi:10.1016/j.foodchem.2015.03.057
  • Ismail GA. Biochemical composition of some Egyptian seaweeds with potent nutritive and antioxidant properties. Food Sci Technol. 2017;37(2):294–302. doi:10.1590/1678-457x.20316
  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29(2):949–82. doi:10.1007/s10811-016-0974-5
  • Pérez MJ, Falque E, Dominguez H. Antimicrobial action of compounds from marine seaweed. Mar Drugs. 2016;14(3):52. doi:10.3390/md14030052
  • Vizetto-Duarte C, Pereira H, Bruno de Sousa C, Pilar Rauter A, Albericio F, Custódio L, Barreira L, Varela J. Fatty acid profile of different species of algae of the Cystoseira genus: a nutraceutical perspective. Nat Prod Res. 2015;29(13):1264–70. doi:10.1080/14786419.2014.992343
  • Rocha DHA, Seca AML, Pinto D. Seaweed secondary metabolites In Vitro and In Vivo anticancer activity. Mar Drugs. 2018;16(11):410. doi:10.3390/md16110410
  • Namvar F, Baharara J, Mahdi AA. Antioxidant and anticancer activities of selected persian gulf algae. Ind J Clin Biochem. 2014;29(1):13–20. doi:10.1007/s12291-013-0313-4
  • Mayer AMS, Rodriguez AD, Taglialatela-Scafati O, Fusetani N. Marine Pharmacology in 2012–2013: Marine compounds with antibacterial, antidiabetic, antifungal, anti-Inflammatory, antiprotozoal, antituberculosis, and antiviral activities; Affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs. 2017;15(9):273. doi:10.3390/md15090273
  • Khalid S, Abbas M, Saeed F, Bader-Ul-Ain H, and, Suleria H. Therapeutic potential of seaweed bioactive compounds. In: Maiti S editor. Seaweed biomaterials. London: IntechOpen, 2018. p. 7–25.
  • Guiry MD, Guiry GM. AlgaeBase. World-wide electronic publication. Galway: National University of Ireland, 2018. http://www.algaebase.org.
  • Pinteus S, Lemos M, Silva J, Alves C, Neugebauer A, Freitas R, Duarte A, Pedrosa R. An insight into Sargassum muticum cytoprotective mechanisms against oxidative stress on a human cell In Vitro model. Mar Drugs. 2017;15(11):353. doi:10.3390/md15110353
  • Shreadah MA, El Moneam NMA, Al-Assar SA, Nabil-Adam A. Phytochemical and pharmacological screening of Sargassium vulgare from Suez Canal. Food Sci Biotechnol. 2018;27(4):963–79. doi:10.1007/s10068-018-0323-3
  • Lim S, Choi A-H, Kwon M, Joung E-J, Shin T, Lee S-G, Kim N-G, Kim H-R. Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food Chem. 2019;278:178–84. doi:10.1016/j.foodchem.2018.11.058
  • Moubayed NM, Al Houri HJ, Al Khulaifi MM, Al Farraj DA. Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J Biol Sci. 2017;24(1):162–9. doi:10.1016/j.sjbs.2016.05.018
  • Li Y, Sun S, Pu X, Yang Y, Zhu F, Zhang S, Xu N. Evaluation of antimicrobial activities of seaweed resources from Zhejiang Coast, China. Sustainability. 2018;10(7):2158. doi:10.3390/su10072158
  • Palanisamy S, Vinosha M, Rajasekar P, Anjali R, Sathiyaraj G, Marudhupandi T, Selvam S, Prabhu NM, You S. Antibacterial efficacy of a fucoidan fraction (Fu-F2) extracted from Sargassum polycystum. Int J Biol Macromol. 2019;125:485–95. doi:10.1016/j.ijbiomac.2018.12.070
  • Patra S, Muthuraman M, Prabhu A, Priyadharshini R, Parthiban S. Evaluation of antitumor and antioxidant activity of Sargassum tenerrimum against Ehrlich ascites carcinoma in mice. Asian Pac J Cancer Prev. 2015;16(3):915–21. doi:10.7314/APJCP.2015.16.3.915
  • Vaseghi G, Sharifi M, Dana N, Ghasemi A, Yegdaneh A. Cytotoxicity of Sargassum angustifolium partitions against breast and cervical cancer cell lines. Adv Biomed Res. 2018;7(1):43. doi:10.4103/abr.abr_259_16
  • Kim ME, Jung YC, Jung I, Lee H-W, Youn H-Y, Lee JS. Anti-inflammatory effects of ethanolic extract from Sargassum horneri (Turner) C. Agardh on lipopolysaccharide-stimulated macrophage activation via NF-kappaB pathway regulation. Immunol Invest. 2015;44(2):137–46. doi:10.3109/08820139.2014.942459
  • Oh S-J, Joung E-J, Kwon M-S, Lee B, Utsuki T, Oh C-W, Kim H-R. Anti-Inflammatory effect of ethanolic extract of Sargassum serratifolium in lipopolysaccharide-stimulated BV2 microglial cells. J Med Food. 2016;19(11):1023–31. doi:10.1089/jmf.2016.3732
  • Jeon H, Yoon WJ, Ham YM, Yoon SA, Kang SC. Anti-Arthritis effect through the anti-Inflammatory effect of Sargassum muticum extract in collagen-induced arthritic (CIA) mice. Molecules. 2019;24(2):276. doi:10.3390/molecules24020276
  • Kim SN, Lee W, Bae GU, Kim YK. Anti-diabetic and hypolipidemic effects of Sargassum yezoense in db/db mice. Biochem Biophys Res Commun. 2012;424(4):675–80. doi:10.1016/j.bbrc.2012.07.005
  • Kolsi RBA, Salah HB, Jardak N, Chaaben R, Jribi I, Feki AE, Rebai T, Jamoussi K, Allouche N, Blecker C, et al. Sulphated polysaccharide isolated from Sargassum vulgare: Characterization and hypolipidemic effects. Carbohydr Polym. 2017;170:148–59.: doi:10.1016/j.carbpol.2017.04.083
  • Akbarzadeh S, Gholampour H, Farzadinia P, Daneshi A, Ramavandi B, Moazzeni A, Keshavarz M, Bargahi A. Anti-diabetic effects of Sargassum oligocystum on Streptozotocin-induced diabetic rat. Iran J Basic Med Sci. 2018;21(3):342–6. doi:10.22038/IJBMS.2018.25654.6329
  • Mhadhebi L, Mhadhebi A, Robert J, Bouraoui A. Antioxidant, anti-inflammatory and antiproliferative effects of aqueous extracts of three Mediterranean brown seaweeds of the genus Cystoseira. Iran J Pharm Res. 2014;13(1):207–20.
  • Vizetto-Duarte C, Custódio L, Acosta G, Lago JHG, Morais TR, Bruno de Sousa C, Gangadhar KN, Rodrigues MJ, Pereira H, Lima RT, et al. Can macroalgae provide promising anti-tumoral compounds? A closer look at Cystoseira tamariscifolia as a source for antioxidant and anti-hepatocarcinoma compounds. PeerJ. 2016;4:e1704.: doi:10.7717/peerj.1704
  • Yegdaneh A, Ghannadi A, Dayani L. Chemical constituents and biological activities of two Iranian Cystoseira species. Res Pharma Sci. 2016;11(4):311–7. doi:10.4103/1735-5362.189307
  • Sellimi S, Benslima A, Barragan-Montero V, Hajji M, Nasri M. Polyphenolic-protein-polysaccharide ternary conjugates from Cystoseira barbata Tunisian seaweed as potential biopreservatives: chemical, antioxidant and antimicrobial properties. Int J Biol Macromol. 2017;105:1375–83. doi:10.1016/j.ijbiomac.2017.08.007
  • Abdelhamid A, Jouini M, Bel Haj Amor H, Mzoughi Z, Dridi M, Ben Said R, Bouraoui A. Phytochemical analysis and evaluation of the antioxidant, anti-Inflammatory, and antinociceptive potential of phlorotannin-rich fractions from three Mediterranean brown seaweeds. Mar Biotechnol. 2018;20(1):60–74. doi:10.1007/s10126-017-9787-z
  • Güner A, Köksal Ç, Erel ŞB, Kayalar H, Nalbantsoy A, Sukatar A, Karabay Yavaşoğlu NÜ. Antimicrobial and antioxidant activities with acute toxicity, cytotoxicity and mutagenicity of Cystoseira compressa (Esper) Gerloff & Nizamuddin from the coast of Urla (Izmir, Turkey). Cytotechnol. 2015;67(1):135–43. doi:10.1007/s10616-013-9668-x
  • Kosanic M, Rankovic B, Stanojkovic T. Biological potential of marine macroalgae of the genus Cystoseira. Acta Biol Hung. 2015;66:374–84.
  • Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, Aguzzi J, Ballesteros E, Bianchi CN, Corbera J, Dailianis T, et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One. 2010;5(8):e11842: doi:10.1371/journal.pone.0011842
  • Gheda SF, El-Adawi HI, Nm E-D. Antiviral profile of brown and red seaweed polysaccharides against hepatitis C virus. Iran J Pharm Res. 2016;15:483–91.
  • Mohy El-Din SM, El-Ahwany AMD. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Uni Sci. 2016;10(4):471–84. doi:10.1016/j.jtusci.2015.06.004
  • Ismail MM, El Zokm GM, El-Sayed AAM. Variation in biochemical constituents and master elements in common seaweeds from Alexandria Coast, Egypt, with special reference to their antioxidant activity and potential food uses: prospective equations. Environ Monit Assess. 2017;189(12):648. doi:10.1007/s10661-017-6366-8
  • Aleem AA. Marine algae of Alexandria, Egypt. In: Aleem AA editor. Egyptian Books House, Egypt. Faculty of science. Alexandria: University of Alexandria, , 1993. 138, pp. 1–55.
  • Heo SJ, Cha SH, Lee KW, Jeon YJ. Antioxidant activities of red algae from Jeju Island. Algae. 2006;21(1):149–56. doi:10.4490/ALGAE.2006.21.1.149
  • Singleton VL, Orthofer R, Rm L-R. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999;299:152–78.
  • Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48(suppl_1):5–16. doi:10.1093/jac/48.suppl_1.5
  • Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol. 2005;4(7):685–8. doi:10.5897/AJB2005.000-3127
  • Burits M, Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res. 2000;14(5):323–8. doi:10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9-10):1231–7. doi:10.1016/S0891-5849(98)00315-3
  • Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337–41. doi:10.1006/abio.1999.4019
  • Collee J, Fraser G, Marmion P, and, Simmons A. Mackie and McCartney Practical Medical Microbiology. 4th ed. New York: Churchill Livingstone, 1996.
  • CLSI. Performance standards for antimicrobial disk susceptibility tests; approved standard. 11th ed. CLSI document M02-A11. vol 32, Wayne, PA: Clinical and Laboratory Standards Institute, 2012, p. 1.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8. doi:10.1006/meth.2001.1262
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248–54. doi:10.1016/0003-2697(76)90527-3
  • Fadda A, El Defrawy AM. El-Hadidy SA: Synthesis, cytotoxicity evaluation, DFT molecular modeling studies and quantitative structure activity relationship of novel 1,8-naphthyridines. Am J Org Chem. 2012;2:87–96.
  • Balboa EM, Conde E, Moure A, Falqué E, Domínguez H. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem. 2013;138(2-3):1764–85. doi:10.1016/j.foodchem.2012.11.026
  • Generalić Mekinić I, Skroza D, Šimat V, Hamed I, Čagalj M, Popović Perković Z. Phenolic content of brown algae (pheophyceae) species: extraction, identification, and quantification. Biomolecules. 2019;9(6):244. doi:10.3390/biom9060244
  • Mehdinezhad N, Ghannadi A, Yegdaneh A. Phytochemical and biological evaluation of some Sargassum species from Persian Gulf. Res Pharm Sci. 2016;11(3):243–9.
  • Pinteus S, Silva J, Alves C, Horta A, Fino N, Rodrigues AI, Mendes S, Pedrosa R. Cytoprotective effect of seaweeds with high antioxidant activity from the Peniche coast (Portugal). Food Chem. 2017;218:591–9. doi:10.1016/j.foodchem.2016.09.067
  • Pacheco BS, D, Santos MAZ, Schultze E, Martins RM, Lund RG, et al. Cytotoxic activity of fatty acids from Antarctic macroalgae on the growth of human breast cancer cells. Front Bioengin Biotechnol. 2018;6:185.
  • Dawczynski C, Schubert R, Jahreis G. Amino acids, fatty acids, and dietary fiber in edible seaweed products. Food Chem. 2007;103(3):891–9. doi:10.1016/j.foodchem.2006.09.041
  • Das U. Essential fatty acids enhance free radical generation and lipid peroxidation toinduce apoptosis of tumor cells. J Clin Lipidol. 2011;6(4):463–89. doi:10.2217/clp.11.34
  • Hidayati JR, Yudiati E, Pringgenies D, Arifin Z, Oktaviyanti DT. Antioxidant activities, total phenolic compound and pigment contents of tropical Sargassum sp. extract, macerated in different solvents polarity. J Kel Trop. 2019;22(1):73–80. doi:10.14710/jkt.v22i1.4404
  • Jassbi AR, Mohabati M, Eslami S, Sohrabipour J, Miri R. Biological activity and chemical constituents of red and brown algae from the persian gulf. Iran J Pharm Res. 2013;12:339–48.
  • Jaswir I, Tope AHT, Raus RA, Monsur HA, Ramli N. Study on anti-bacterial potentials of some Malaysian brown seaweeds. Food Hydrocoll. 2014;42:275–9. doi:10.1016/j.foodhyd.2014.03.008
  • El-Shouny W, Gaafar RM, Ismail GA, Elzanaty MM. Antibacterial activity of some seaweed extracts against multidrug resistant urinary tract bacteria and analysis of their virulence genes. Int J Curr Microbiol App Sci. 2017;6:2569–86.
  • Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564–82. doi:10.1128/CMR.12.4.564
  • Desbois PA, Smith JV. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85(6):1629–42. doi:10.1007/s00253-009-2355-3
  • El Shafay SM, Ali SS, El-Sheekh MM. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt J Aquat Res. 2016;42(1):65–74. doi:10.1016/j.ejar.2015.11.006
  • Namvar F, Mohamad R, Baharara J, Zafar-Balanejad S, Fargahi F, Rahman HS. Antioxidant, antiproliferative, and antiangiogenesis effects of polyphenol-rich seaweed (Sargassum muticum). BioMed Res Int. 2013;2013:1–9. 2013. doi:10.1155/2013/604787
  • Singh M, Bhatnagar P, Mishra S, Kumar P, Shukla Y, Gupta KC. PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma. Int J Nanomed. 2015;10:6789–809.
  • Jo EH, Cho SD, Ahn NS, Jung JW, Yang SR. Inhibition of human breast carcinoma by BLC (Sargassum fulvellum) and BLC/HEN Egg in vitro and in vivo. Korean J Vet Res. 2005;45:85–91.
  • Fan S, Zhang J, Nie W, Zhou W, Jin L, Chen X, Lu J. Antitumor effects of polysaccharide from Sargassum fusiforme against human hepatocellular carcinoma HepG2 cells. Food Chem Toxicol. 2017;102:53–62. doi:10.1016/j.fct.2017.01.020
  • Liu G, Kuang S, Wu S, Jin W, Sun C. A novel polysaccharide from Sargassum integerrimum induces apoptosis in A549 cells and prevents angiogensis in vitro and in vivo. Sci Rep. 2016;6(1):26722. doi:10.1038/srep26722
  • Shao P, Chen X, Sun P. Chemical characterization, antioxidant and antitumor activity of sulfated polysaccharide from Sargassum horneri. Carbohydr Polym. 2014;105:260–9. doi:10.1016/j.carbpol.2014.01.073
  • Silva Costa L, Silva Telles CB, Medeiros Oliveira R, Duarte Barreto Nobre LT, Dantas-Santos N, Barros Gomes Camara R, Santana Santos Pereira Costa M, Almeida-Lima J, Melo-Silveira RF, Lopes Albuquerque IR, et al. Heterofucan from Sargassum filipendula induces apoptosis in HeLa cells. Mar Drugs. 2011;9(4):603–14., : doi:10.3390/md9040603
  • Vizetto-Duarte C, Custódio L, Gangadhar KN, Lago JHG, Dias C, Matos AM, Neng N, Nogueira JMF, Barreira L, Albericio F, et al. Isololiolide, a carotenoid metabolite isolated from the brown alga Cystoseira tamariscifolia, is cytotoxic and able to induce apoptosis in hepatocarcinoma cells through caspase-3 activation, decreased Bcl-2 levels, increased p53 expression and PARP cleavage. Phytomedicine. 2016;23(5):550–7.: doi:10.1016/j.phymed.2016.02.008
  • Islam MA, Kim YS, Jang WJ, Lee SM, Kim HG, Kim SY, Kim JO, Ha YL. A mixture of trans, trans conjugated linoleic acid induces apoptosis in MCF-7 human breast cancer cells with reciprocal expression of Bax and Bcl-2. J Agric Food Chem. 2008;56(14):5970–6. doi:10.1021/jf8004977
  • Koba K, Yanagita T. Health benefits of conjugated linoleic acid (CLA). Obes Res Clin Pract. 2014;8(6):e525–532. doi:10.1016/j.orcp.2013.10.001
  • Lim J-N, Oh J-J, Wang T, Lee J-S, Kim S-H, Kim Y-J, Lee H-G. trans-11 18:1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. Nutrients. 2014;6(2):627–36. doi:10.3390/nu6020627
  • Liu J, Chen B, Yang Y, Wang X. Effect of apoptosis in human mammary cancer (MCF-7) cells induced by cis9, t11-conjugated linoleic acid. Wei Sheng Yan Jiu. 2004;33(1):58–62.
  • Kim YS, Cerbo RM, Hah CK, Bahn KN, Kim JO, Ha YL. Growth inhibition of osteosarcoma cell MG-63 by a mixture of trans, trans conjugated linoleic acid isomers: possible mechanistic actions. J Food Sci. 2007;73(1):T7–15. doi:10.1111/j.1750-3841.2007.00584.x
  • Wang J, Liu X, Zhang X, Liu J, Ye S, Xiao S, Chen H, Wang H. Induction of apoptosis by c9, t11-CLA in human endometrial cancer RL 95-2 cells via ERalpha-mediated pathway. Chem Phys Lipids. 2013;175-176:27–32. doi:10.1016/j.chemphyslip.2013.07.009
  • Lu G, Zhang G, Zheng X, Zeng Y, Xu Z, et al. c9, t11- conjugated linoleic acid induces HCC cell apoptosis and correlation with PPAR-gamma signaling pathway. Am J Trans Res. 2015;7:2752–63.:
  • Janicke RU. MCF-7 breast carcinoma cells do not express caspase-3. Breast Cancer Res Treat. 2009;117:219–21.
  • Wang S, He M, Li L, Liang Z, Zou Z, Tao A. Cell-in-cell death is not restricted by caspase-3 deficiency in MCF-7 cells. J Breast Cancer. 2016;19(3):231–41. doi:10.4048/jbc.2016.19.3.231
  • Carvalho ACP, Sharpe J, Rosenstock TR, Teles AFV, Kowaltowski AJ, Youle RJ, Smaili SS. Bax affects intracellular Ca2+ stores and induces Ca2+ wave propagation. Cell Death Differ. 2004;11(12):1265–76. doi:10.1038/sj.cdd.4401508
  • Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem. 1999;274(4):2225–33. doi:10.1074/jbc.274.4.2225
  • Xiang J, Chao DT, Korsmeyer SJ. BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci USA. 1996;93(25):14559–63. doi:10.1073/pnas.93.25.14559
  • Kagawa S, Gu J, Honda T, McDonnell TJ, Swisher SG, et al. Deficiency of caspase-3 in MCF7 cells blocks Bax-mediated nuclear fragmentation but not cell death. Clin Cancer Res. 2001;7:1474–80.:
  • Demaurex N, Distelhorst C. Apoptosis–the calcium connection. Science. 2003;300(5616):65–7. doi:10.1126/science.1083628
  • Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27(50):6407–18. doi:10.1038/onc.2008.308
  • Rong Y, Distelhorst CW. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol. 2008;70(1):73–91. doi:10.1146/annurev.physiol.70.021507.105852
  • Ravanan P, Srikumar IF, Talwar P. Autophagy: the spotlight for cellular stress responses. Life Sci. 2017;188:53–67. doi:10.1016/j.lfs.2017.08.029
  • Doherty J, Baehrecke EH. Life, death and autophagy. Nat Cell Biol. 2018;20(10):1110–7. doi:10.1038/s41556-018-0201-5
  • Bialik S, Dasari SK, Kimchi A. Autophagy-dependent cell death - where, how and why a cell eats itself to death. J Cell Sci. 2018;131(18):jcs215152–12. doi:10.1242/jcs.215152
  • Carew JS, Kelly KR, Nawrocki ST. Autophagy as a target for cancer therapy: new developments. Cancer Manag Res. 2012;4:357–65. doi:10.2147/CMAR.S26133
  • Ozpolat B, Benbrook DM. Targeting autophagy in cancer management - strategies and developments. Cancer Manag Res. 2015;7:291–9. doi:10.2147/CMAR.S34859
  • Yun CW, Lee SH. The roles of autophagy in cancer. IJMS. 2018;19(11):3466. doi:10.3390/ijms19113466
  • Yu L, Alva A, Su H, Dutt P, Freundt E, et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science. 2004;304(5676):1500–2.: doi:10.1126/science.1096645
  • Pattingre S, Levine B. Bcl-2 inhibition of autophagy: a new route to cancer? Cancer Res. 2006;66(6):2885–8. doi:10.1158/0008-5472.CAN-05-4412
  • Luo S, Rubinsztein DC. Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ. 2007;14(7):1247–50. doi:10.1038/sj.cdd.4402149

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.