211
Views
8
CrossRef citations to date
0
Altmetric
Review

Regulatory T Cells in Bioactive Peptides-Induced Oral Tolerance; a Two-Edged Sword Related to the Risk of Chronic Diseases: A Systematic Review

, , , , , , & show all
Pages 956-967 | Received 07 Oct 2019, Accepted 08 Jun 2020, Published online: 10 Jul 2020

References

  • Chalamaiah M, Keskin Ulug S, Hong H, Wu J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. J Funct Foods. 2019;58:123–129. doi:10.1016/j.jff.2019.04.050
  • Chakrabarti S, Guha S, Majumder K. Food-derived bioactive peptides in human health: challenges and opportunities. Nutrients. 2018;10(11):1738. doi:10.3390/nu10111738
  • Díaz-Gómez JL, Castorena-Torres F, Preciado-Ortiz RE, García-Lara S. Anti-cancer activity of maize bioactive peptides. Front Chem. 2017;5:44. doi:10.3389/fchem.2017.00044
  • Aluko RE. Antihypertensive peptides from food proteins. Annu Rev Food Sci Technol. 2015;6:235–262. doi:10.1146/annurev-food-022814-015520
  • Mohanty D, Jena R, Choudhury PK, Pattnaik R, Mohapatra S, Saini MR. Milk derived antimicrobial bioactive peptides: a review. Int J Food Prop. 2016;19(4):837–846. doi:10.1080/10942912.2015.1048356
  • Bhat ZF, Kumar S, Bhat HF. Bioactive peptides of animal origin: a review. J Food Sci Technol. 2015;52(9):5377–5392. doi:10.1007/s13197-015-1731-5
  • González-Montoya M, Hernández-Ledesma B, Mora-Escobedo R, Martínez-Villaluenga C. Bioactive peptides from germinated soybean with anti-diabetic potential by inhibition of dipeptidyl peptidase-IV, α-amylase, and α-glucosidase enzymes. Int J Mol Sci. 2018;19(10):2883. doi:10.3390/ijms19102883
  • Moronta J, Smaldini PL, Fossati CA, Añon MC, Docena GH. The anti-inflammatory SSEDIKE peptide from Amaranth seeds modulates IgE-mediated food allergy. J Funct Foods. 2016;25:579–587. doi:10.1016/j.jff.2016.06.031
  • Jiménez M, Cervantes-García D, Muñoz YH, García A, Haro LM, Salinas E. Jr. Novel mechanisms underlying the therapeutic effect of glycomacropeptide on allergy: change in gut microbiota, upregulation of TGF-β, and inhibition of mast cells. Int Arch Allergy Immunol. 2016;171(3-4):217–226. doi:10.1159/000453035
  • Pabst O, Mowat AM. Oral tolerance to food protein. Mucosal Immunol. 2012;5(3):232–239. doi:10.1038/mi.2012.4
  • Commins SP. Mechanisms of oral tolerance. Pediatr Clin North Am. 2015;62(6):1523–1529. doi:10.1016/j.pcl.2015.07.013
  • Husby S. Normal immune responses to ingested foods. J Pediatr Gastroenterol Nutr. 2000;30(Suppl):S13–S19. doi:10.1097/00005176-200001001-00003
  • Li Z, Luo Y, Feng L, Liao P. Effect of Maillard reaction conditions on antigenicity of β-lactoglobulin and the properties of glycated whey protein during simulated gastric digestion. Food Agric Immunol. 2013;24(4):433–443. doi:10.1080/09540105.2012.712951
  • Mundkur L, Mukhopadhyay R, Samson S, Varma M, Kale D, Chen D, Shivaprasad S, Sivanandan H, Soman V, Lu X, et al. Mucosal tolerance to a combination of ApoB and HSP60 peptides controls plaque progression and stabilizes vulnerable plaque in Apob(tm2Sgy)Ldlr(tm1Her)/J mice. PLoS One. 2013;8(3):e58364. doi:10.1371/journal.pone.0058364
  • Nishikimi A, Koyama Y-I, Ishihara S, Kobayashi S, Tometsuka C, Kusubata M, Kuwaba K, Hayashida O, Hattori S, Katagiri K, et al. Collagen-derived peptides modulate CD4+ T-cell differentiation and suppress allergic responses in mice. Immun Inflamm Dis. 2018;6(2):245–255. doi:10.1002/iid3.213
  • Thota LN, Ponnusamy T, Philip S, Lu X, Mundkur L. Immune regulation by oral tolerance induces alternate activation of macrophages and reduces markers of plaque destabilization in Apobtm2Sgy/Ldlrtm1Her/J mice. Sci Rep. 2017;7(1):3997–3997. doi:10.1038/s41598-017-04183-w
  • Barth SD, Schulze JJ, Kuhn T, Raschke E, Husing A, et al. Treg-mediated immune tolerance and the risk of solid cancers: findings from EPIC-Heidelberg. J Natl Cancer Inst. 2015;107(11):p.djv224. doi:10.1093/jnci/djv224
  • Sidaway P. Risk factors: immune tolerance confers cancer risk. Nat Rev Clin Oncol. 2015;12(10):564. doi:10.1038/nrclinonc.2015.157
  • Udenigwe CC, Fogliano V. Food matrix interaction and bioavailability of bioactive peptides: two faces of the same coin? J Funct Foods. 2017;35:9–12. doi:10.1016/j.jff.2017.05.029
  • Steele L, Mayer L, Berin MC. Mucosal immunology of tolerance and allergy in the gastrointestinal tract. Immunol Res. 2012;54(1-3):75–82. doi:10.1007/s12026-012-8308-4
  • Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097
  • Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol. 2014;14:43. doi:10.1186/1471-2288-14-43
  • Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JAC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928:doi:10.1136/bmj.d5928
  • Margulis AV, Pladevall M, Riera-Guardia N, Varas-Lorenzo C, Hazell L, Berkman ND, Viswanathan M, Perez-Gutthann S. Quality assessment of observational studies in a drug-safety systematic review, comparison of two tools: the Newcastle-Ottawa Scale and the RTI item bank. Clin Epidemiol. 2014;6:359–368. doi:10.2147/clep.s66677
  • Popay J, Roberts H, Sowden A, Petticrew M, Arai L, et al. Guidance on the conduct of narrative synthesis in systematic reviews. 2006. Guidance on the conduct of narrative synthesisin systematic reviews. A Product from the ESRC Methods ProgrammeVersion, 1, b92.
  • Jimenez M, Chavez NA, Salinas E. Pretreatment with glycomacropeptide reduces allergen sensitization, alleviates immediate cutaneous hypersensitivity and protects from anaphylaxis. Clin Exp Immunol. 2012;170(1):18–27. doi:10.1111/j.1365-2249.2012.04631.x
  • He C, Song C-H, Cheng L, Chen T, Liu C, Liu Z, Yang P-C. Measles virus-derived peptide/food antigen adducts facilitate the establishment of antigen specific oral tolerance. J Physiol Pharmacol. 2013;64(1):95–102.
  • Roldan NR, Jimenez M, Cervantes-Garcia D, Marin E, Salinas E. Glycomacropeptide administration attenuates airway inflammation and remodeling associated to allergic asthma in rat. Inflamm Res. 2016;65(4):273–283. doi:10.1007/s00011-015-0913-y
  • Xi C, Tan L, Sun Y, Liang F, Liu N, Xue H, Luo Y, Yuan F, Sun Y, Xi Y, et al. A novel recombinant peptide containing only two T-cell tolerance epitopes of chicken type II collagen that suppresses collagen-induced arthritis. Mol Immunol. 2009;46(4):729–737. doi:10.1016/j.molimm.2008.10.016
  • Chen L, Bao B, Wang N, Xie J, Wu W. Oral administration of shark type II collagen suppresses complete Freund's adjuvant-induced rheumatoid arthritis in rats. Pharmaceuticals (Basel)). 2012;5(4):339–352. doi:10.3390/ph5040339
  • Yasufuku K, Heidler KM, O'Donnell PW, Smith GN, Cummings OW, Foresman BH, Fujisawa T, Wilkes DS. Oral tolerance induction by type V collagen downregulates lung allograft rejection. Am J Respir Cell Mol Biol. 2001;25(1):26–34. doi:10.1165/ajrcmb.25.1.4431
  • Cui Y, Zhu C, Ming Z, Cao J, Yan Y, Zhao P, Pang G, Deng Z, Yao Y, Chen Q, et al. Molecular mechanisms by which casein glycomacropeptide maintains internal homeostasis in mice with experimental ulcerative colitis. PLoS One. 2017;12(7):e0181075. doi:10.1371/journal.pone.0181075
  • Benito-Ruiz P, Camacho-Zambrano MM, Carrillo-Arcentales JN, Mestanza-Peralta MA, Vallejo-Flores CA, Vargas-López SV, Villacís-Tamayo RA, Zurita-Gavilanes LA. A randomized controlled trial on the efficacy and safety of a food ingredient, collagen hydrolysate, for improving joint comfort. Int J Food Sci Nutr. 2009;60(Suppl 2):99–113. doi:10.1080/09637480802498820
  • Trc T, Bohmova J. Efficacy and tolerance of enzymatic hydrolysed collagen (EHC) vs. glucosamine sulphate (GS) in the treatment of knee osteoarthritis (KOA). Int Orthop. 2011;35:341–348. doi:10.1007/s00264-010-1010-z
  • Bruyère O, Zegels B, Leonori L, Rabenda V, Janssen A, Bourges C, Reginster J-Y. Effect of collagen hydrolysate in articular pain: a 6-month randomized, double-blind, placebo controlled study. Complement Ther Med. 2012;20(3):124–130. doi:10.1016/j.ctim.2011.12.007
  • Schauss AG, Stenehjem J, Park J, Endres JR, Clewell A. Effect of the novel low molecular weight hydrolyzed chicken sternal cartilage extract, BioCell Collagen, on improving osteoarthritis-related symptoms: a randomized, double-blind, placebo-controlled trial. J Agric Food Chem. 2012;60(16):4096–4101. doi:10.1021/jf205295u
  • Kumar S, Sugihara F, Suzuki K, Inoue N, Venkateswarathirukumara S. A double-blind, placebo-controlled, randomised, clinical study on the effectiveness of collagen peptide on osteoarthritis. J Sci Food Agric. 2015;95(4):702–707. doi:10.1002/jsfa.6752
  • Lugo JP, Saiyed ZM, Lane NE. Efficacy and tolerability of an undenatured type II collagen supplement in modulating knee osteoarthritis symptoms: a multicenter randomized, double-blind, placebo-controlled study. Nutr J. 2016;15:14. doi:10.1186/s12937-016-0130-8
  • Wigren M, Björkbacka H, Andersson L, Ljungcrantz I, Fredrikson GN, Persson M, Bryngelsson C, Hedblad B, Nilsson J. Low levels of circulating CD4 + FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler Thromb Vasc Biol. 2012;32(8):2000–2004. doi:10.1161/atvbaha.112.251579
  • Roduit C, Frei R, Depner M, Schaub B, Loss G, Genuneit J, Pfefferle P, Hyvärinen A, Karvonen AM, Riedler J, et al. Increased food diversity in the first year of life is inversely associated with allergic diseases. J Allergy Clin Immunol. 2014;133(4):1056–1064. doi:10.1016/j.jaci.2013.12.1044
  • Barth SD, Kaaks R, Johnson T, Katzke V, Gellhaus K, Schulze JJ, Olek S, Kühn T. The ratio of regulatory (FOXP3+) to total (CD3+) T cells determined by epigenetic cell counting and cardiovascular disease risk: a prospective case-cohort study in non-diabetics. EBioMedicine. 2016;11:151–156. doi:10.1016/j.ebiom.2016.07.035
  • Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol. 2013;94(1):25–39. doi:10.1189/jlb.1212621
  • Schmidt-Weber CB, Blaser K. The role of TGF-beta in allergic inflammation. Immunol Allergy Clin North Am. 2006;26(2):233–244. doi:10.1016/j.iac.2006.02.011
  • Tirado-Rodriguez B, Ortega E, Segura-Medina P, Huerta-Yepez S. TGF-β: an important mediator of allergic disease and a molecule with dual activity in cancer development. J Immunol Res. 2014;2014:1–15. doi:10.1155/2014/318481
  • Humbles AA, Lloyd CM, McMillan SJ, Friend DS, Xanthou G, McKenna EE, Ghiran S, Gerard NP, Yu C, Orkin SH, et al. A critical role for eosinophils in allergic airways remodeling. Science. 2004;305(5691):1776–1779. doi:10.1126/science.1100283
  • Redington AE, Madden J, Frew AJ, Djukanovic R, Roche WR, Holgate ST, Howarth PH. Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med. 1997;156(2 Pt 1):642–647. doi:10.1164/ajrccm.156.2.9605065
  • Jago CB, Yates J, Câmara NOS, Lechler RI, Lombardi G. Differential expression of CTLA-4 among T cell subsets. Clin Exp Immunol. 2004;136(3):463–471. doi:10.1111/j.1365-2249.2004.02478.x
  • Huang J-H, Tykocinski ML. CTLA-4-Fas ligand functions as a trans signal converter protein in bridging antigen-presenting cells and T cells. Int Immunol. 2001;13(4):529–539. doi:10.1093/intimm/13.4.529
  • Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH. CTLA-4 regulates induction of anergy in vivo. Immunity. 2001;14(2):145–155. doi:10.1016/s1074-7613(01)00097-8
  • Xu GL, Zhu XH, Guo B, Wu YZ. Involvement of CTLA-4 in T-cell anergy induced by staphylococcal enterotoxin A in vitro. Mol Immunol. 2004;41(1):1–8. doi:10.1016/j.molimm.2004.03.001
  • Schwartz RH. T cell anergy. Annu Rev Immunol. 2003;21:305–334. doi:10.1146/annurev.immunol.21.120601.141110
  • Edgar S, Hopley B, Genovese L, Sibilla S, Laight D, Shute J. Effects of collagen-derived bioactive peptides and natural antioxidant compounds on proliferation and matrix protein synthesis by cultured normal human dermal fibroblasts. Sci Rep. 2018;8(1):10474. doi:10.1038/s41598-018-28492-w
  • Orlowsky EW, Kraus VB. The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive. J Rheumatol. 2015;42(3):363–371. doi:10.3899/jrheum.140382
  • Mobasheri A. The future of osteoarthritis therapeutics: emerging biological therapy. Curr Rheumatol Rep. 2013;15(12):385. doi:10.1007/s11926-013-0385-4
  • Kalchishkova N, Furst CM, Heinegard D, Blom AM. NC4 Domain of cartilage-specific collagen IX inhibits complement directly due to attenuation of membrane attack formation and indirectly through binding and enhancing activity of complement inhibitors C4B-binding protein and factor H. J Biol Chem. 2011;286(32):27915–27926. doi:10.1074/jbc.M111.242834
  • Sjoberg A, Onnerfjord P, Morgelin M, Heinegard D, Blom AM. The extracellular matrix and inflammation: fibromodulin activates the classical pathway of complement by directly binding C1q. J Biol Chem. 2005;280(37):32301–32308. doi:10.1074/jbc.M504828200
  • Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem. 2001;276(13):10229–10233. doi:10.1074/jbc.M100099200
  • Wang Q, Rozelle AL, Lepus CM, Scanzello CR, Song JJ, Larsen DM, Crish JF, Bebek G, Ritter SY, Lindstrom TM, et al. Identification of a central role for complement in osteoarthritis. Nat Med. 2011;17(12):1674–1679. doi:10.1038/nm.2543
  • Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr Cartil. 2013;21(1):16–21. doi:10.1016/j.joca.2012.11.012
  • Fathollahi A, Aslani S, Jamshidi A, Mahmoudi M. Epigenetics in osteoarthritis: novel spotlight. J Cell Physiol. 2019;234(8):12309–12324. doi:10.1002/jcp.28020
  • Marcu KB, Otero M, Olivotto E, Borzi RM, Goldring MB. NF-kappaB signaling: multiple angles to target OA. Curr Drug Targets. 2010;11(5):599–613. doi:10.2174/138945010791011938
  • Quintieri L, Monaci L, Baruzzi F, Giuffrida MG, de Candia S, Caputo L. Reduction of whey protein concentrate antigenicity by using a combined enzymatic digestion and ultrafiltration approach. J Food Sci Technol. 2017;54(7):1910–1916. doi:10.1007/s13197-017-2625-5
  • Haspeslagh E, Heyndrickx I, Hammad H, Lambrecht BN. The hygiene hypothesis: immunological mechanisms of airway tolerance. Curr Opin Immunol. 2018;54:102–108. doi:10.1016/j.coi.2018.06.007
  • Duan W, Croft M. Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells. Ann Am Thorac Soc. 2014;11(Suppl 5):S306–S313. doi:10.1513/AnnalsATS.201401-028AW
  • Kamdem JP, Tsopmo A. Reactivity of peptides within the food matrix. J Food Biochem. 2019;43(1):e12489. doi:10.1111/jfbc.12489
  • Tayyem RF, Bawadi HA, Shehadah IN, Abu-Mweis SS, Agraib LM, Bani-Hani KE, Al-Jaberi T, Al-Nusairr M, Heath DD. Macro- and micronutrients consumption and the risk for colorectal cancer among Jordanians. Nutrients. 2015;7(3):1769–1786. doi:10.3390/nu7031769
  • Slattery ML, Potter JD, Sorenson AW. Age and risk factors for colon cancer (United States and Australia): are there implications for understanding differences in case-control and cohort studies? Cancer Causes Control. 1994;5(6):557–563. doi:10.1007/BF01831384
  • Slattery ML, Caan BJ, Potter JD, Berry TD, Coates A, Duncan D, Edwards SL. Dietary energy sources and colon cancer risk. Am J Epidemiol. 1997;145(3):199–210. doi:10.1093/oxfordjournals.aje.a009092
  • Fernandez E, Negri E, La Vecchia C, Franceschi S. Diet diversity and colorectal cancer. Prev Med. 2000;31(1):11–14. doi:10.1006/pmed.2000.0667
  • Slattery ML, Berry TD, Potter J, Caan B. Diet diversity, diet composition, and risk of colon cancer (United States). Cancer Causes Control. 1997;8(6):872–882. doi:10.1023/a:1018416412906
  • Su L-y, Shi Y-x, Yan M-r, Xi Y, Su X-l. Anticancer bioactive peptides suppress human colorectal tumor cell growth and induce apoptosis via modulating the PARP-p53-Mcl-1 signaling pathway. Acta Pharmacol Sin. 2015;36(12):1514–1519. doi:10.1038/aps.2015.80
  • Suarez-Jimenez G-M, Burgos-Hernandez A, Ezquerra-Brauer J-M. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar Drugs. 2012;10(5):963–986. doi:10.3390/md10050963
  • Corthay A. Does the immune system naturally protect against cancer? Front Immunol. 2014;5:197. doi:10.3389/fimmu.2014.00197
  • Barati M, Yousefi M, Ebrahimi-Mameghani M, Mohammadi H, Brazvan B, Nickho H, Fouladi M, Mohammadi M. Oryzatensin-stimulated PBMCs increase cancer progression in-vitro. Iran J Allergy Asthma Immunol. 2017;16(2):120–126.
  • Luo Q, Boom RM, Janssen AEM. Digestion of protein and protein gels in simulated gastric environment. LWT - Food Sci Technol. 2015;63(1):161–168. doi:10.1016/j.lwt.2015.03.087
  • Ruiz GA, Opazo-Navarrete M, Meurs M, Minor M, Sala G, van Boekel M, Stieger M, Janssen AEM. Denaturation and in vitro gastric digestion of heat-treated quinoa protein isolates obtained at various extraction pH. Food Biophys. 2016;11:184–197. doi:10.1007/s11483-016-9429-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.