485
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Oxidative Stress in Caffeine Action on the Proliferation and Death of Human Breast Cancer Cells MCF-7 and MDA-MB-231

, , , , , & show all
Pages 1378-1388 | Received 20 Mar 2020, Accepted 27 Jun 2020, Published online: 21 Jul 2020

References

  • Sabisz M, Skladanowski A. Modulation of cellular response to anticancer treatment by caffeine: inhibition of cell cycle checkpoints, DNA repair and more. Curr Pharm Biotechnol. 2008;9(4):325–36. doi:10.2174/138920108785161497
  • Romualdo GR, Rocha AB, Vinken M, Cogliati B, Moreno FS, Chaves MAG, Barbisan LF. Drinking for protection? Epidemiological and experimental evidence on the beneficial effects of coffee or major coffee compounds against gastrointestinal and liver carcinogenesis. Food Res Int. 2019;123:567–89. doi:10.1016/j.foodres.2019.05.029
  • Salari-Moghaddam A, Milajerdi A, Surkan PJ, Larijani B, Esmaillzadeh A. Caffeine, type of coffee, and risk of ovarian cancer: a dose-response meta-analysis of prospective studies. J Clin Endocrinol Metab. 2019;104(11):5349–59. doi:10.1210/jc.2019-00637
  • Lafranconi A, Micek A, De Paoli P, Bimonte S, Rossi P, Quagliariello V, Berretta M. Coffee intake decreases risk of postmenopausal breast cancer: a dose-response meta-analysis on prospective cohort studies. Nutrients. 2018;10(2):112. pii: doi:10.3390/nu10020112,
  • Hashimoto T, He Z, Ma W-Y, Schmid PC, Bode AM, Yang CS, Dong Z. Caffeine inhibits cell proliferation by G0/G1 phase arrest in JB6 cells. Cancer Res. 2004;64(9):3344–9. doi:10.1158/0008-5472.can-03-3453
  • Ku BM, Lee YK, Jeong JY, Ryu J, Choi J, Kim JS, Cho YW, Roh GS, Kim HJ, Cho GJ, et al. Caffeine inhibits cell proliferation and regulates PKA/GSK3β pathways in U87MG human glioma cells. Mol Cells. 2011;31(3):275–9. doi:10.1007/s10059-011-0027-5
  • Niknafs B. Induction of apoptosis and non-apoptosis in human breast cancer cell line (MCF-7) by cisplatin and caffeine. Iran Biomed J. 2011;15(4):130–3. doi:10.6091/ibj.1000.2012
  • Nikitina D, Chen Z, Vallis K, Poll A, Ainsworth P, Narod SA, Kotsopoulos J. Relationship between caffeine and levels of DNA repair and oxidative stress in women with and without a BRCA1 mutation. J Nutrigenet Nutrige. 2015;8(4-6):174–84. doi:10.1159/000439110
  • Oh J-K, Sandin S, Ström P, Löf M, Adami H-O, Weiderpass E. Prospective study of breast cancer in relation to coffee, tea and caffeine in Sweden. Int J Cancer. 2015;137(8):1979–89. doi:10.1002/ijc.29569
  • Li J, Seibold P, Chang-Claude J, Flesch-Janys D, Liu J, Czene K, Humphreys K, Hall P. Coffee consumption modifies risk of estrogen-receptor negative breast cancer. Breast Cancer Res. 2011;13(3):R49. doi: 10.1186/bcr2879,
  • Tang N, Zhou B, Wang B, Yu R. Coffee consumption and risk of breast cancer: a metaanalysis. Am J Obstet Gynecol. 2009;200(3):290.e1–290.e9. doi:10.1016/j.ajog.2008.10.019
  • Vatten LJ, Solvoll K, Løken EB. Coffee consumption and the risk of breast cancer. A prospective study of 14,593 Norwegian women. Br J Cancer. 1990;62(2):267–70. doi:10.1038/bjc.1990.274
  • Lelo A, Miners JO, Robson R, Birkett DJ. Assessment of caffeine exposure: caffeine content of beverages, caffeine intake, and plasma concentrations of methylxanthines. Clin Pharmacol Ther. 1986;39(1):54–9. doi:10.1038/clpt.1986.10
  • Holstege CP, Hunter Y, Baer AB, Savory J, Bruns DE, Boyd JC. Massive caffeine overdose requiring vasopressin infusion and hemodialysis. J Toxicol Clin Toxicol. 2003;41(7):1003–7. doi:10.1081/clt-120026526
  • Rosendahl AH, Perks CM, Zeng L, Markkula A, Simonsson M, Rose C, Ingvar C, Holly JMP, Jernström H. Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer . Clin Cancer Res. 2015;21(8):1877–87. doi:10.1158/1078-0432.CCR-14-1748
  • Cadoná FC, Rosa JL, Schneider T, Cubillos-Rojas M, Sánchez-Tena S, Azzolin VF, Assmann CE, Machado AK, Ribeiro EE, da Cruz IBM, et al. Guaraná, a highly caffeinated food, presents in vitro antitumor activity in colorectal and breast cancer cell lines by inhibiting AKT/mTOR/S6K and MAPKs pathways. Nutr Cancer. 2017;69(5):800–10. doi:10.1080/01635581.2017.1324994
  • Belizario JE, Tilly JL, Sherwood SW. Caffeine potentiates the lethality of tumour necrosis factor in cancer cells. Br J Cancer. 1993;67(6):1229–35. doi:10.1038/bjc.1993.230
  • Essmann F, Engels IH, Totzke G, Schulze-Osthoff K, Jänicke RU. Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event. Cancer Res. 2004;64(19):7065–72. doi:10.1158/0008-5472.CAN-04-1082
  • Jha MN, Bamburg JR, Bernstein BW, Bedford JS. Caffeine eliminates gamma-ray-induced G2-phase delay in human tumor cells but not in normal cells. Radiat Res. 2002;157(1):26–31. doi:10.1667/0033-7587(2002)157[0026:CEGRIG]2.0.CO;2
  • Panis C, Herrera ACSA, Victorino VJ, Campos FC, Freitas LF, De Rossi T, Colado Simão AN, Cecchini AL, Cecchini R. Oxidative stress and hematological profiles of advanced breast cancer patients subjected to paclitaxel or doxorubicin chemotherapy. Breast Cancer Res Treat. 2012;133(1):89–97. doi:10.1007/s10549-011-1693-x
  • Marinello PC, da Silva TNX, Panis C, Neves AF, Machado KL, Borges FH, Guarnier FA, Bernardes SS, de-Freitas-Junior JCM, Morgado-Díaz JA, et al. Mechanism of metformin action in MCF-7 and MDA-MB-231 human breast cancer cells involves oxidative stress generation, DNA damage, and transforming growth factor β1 induction. Tumour Biol. 2016;37(4):5337–46. doi:10.1007/s13277-015-4395-x
  • Teppo H, Soini Y, Karihtala P. Reactive oxygen species-mediated mechanisms of action of targeted cancer therapy. Oxid Med Cell Longev. 2017;2017:1485283. doi:10.1155/2017/1485283,
  • Pelicano H, Carney D, Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004;7(2):97–110. doi:10.1016/j.drup.2004.01.004
  • Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?. Nat Rev Drug Discov. 2009;8(7):579–91. doi:10.1038/nrd2803
  • Sun Y, Li Y-X, Wu H-J, Wu S-H, Wang YA, Luo D-Z, Liao DJ. Effects of an indolocarbazole-derived CDK4 inhibitor on breast cancer cells. J Cancer. 2011;2:36–51. doi:10.7150/jca.2.36
  • Gonzalez-Flecha B, Llesuy S, Boveris A. Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med. 1991;10(2):93–100. doi:10.1016/0891-5849(91)90002-k
  • Victorino VJ, Panis C, Campos FC, Cayres RC, Colado-Simão AN, Oliveira SR, Herrera ACSA, Cecchini AL, Cecchini R. Decreased oxidant profile and increased antioxidant capacity in naturally postmenopausal women. Age. 2013;35(4):1411–21. doi:10.1007/s11357-012-9431-9
  • Marinello PC, Panis C, Silva TNX, Binato R, Abdelhay E, Rodrigues JA, Mencalha AL, Lopes NMD, Luiz RC, Cecchini R, et al. Metformin prevention of doxorubicin resistance in MCF-7 and MDA-MB-231 involves oxidative stress generation and modulation of cell adaptation genes. Sci Rep. 2019;9(1):5864: doi: 10.1038/s41598-019-42357-w,
  • Panis C, Herrera AC, Victorino VJ, Aranome AM, Cecchini R. Screening of circulating TGF-β levels and its clinicopathological significance in human breast cancer. Anticancer Res. 2013;33(2):737–42.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–75.
  • Miller GL. Protein determination for large numbers of samples. Anal Chem. 1959;31(5):964. doi:10.1021/ac60149a611
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55–63. doi:10.1016/0022-1759(83)90303-4
  • Stocks P. Cancer mortality in relation to national consumption of cigarettes, solid fuel, tea and coffee. Br J Cancer. 1970;24(2):215–225. doi:10.1038/bjc.1970.25
  • Qi W, Qiao D, Martinez JD. Caffeine induces TP53-independent G(1)-phase arrest and apoptosis in human lung tumor cells in a dose-dependent manner. Radiat Res. 2002;157(2):166–174. doi:10.1667/0033-7587(2002)157[0166:CITIGP]2.0.CO;2
  • Okano J, Nagahara T, Matsumoto K, Murawaki Y. Caffeine inhibits the proliferation of liver cancer cells and activates the MEK/ERK/EGFR signalling pathway. Basic Clin Pharmacol Toxicol. 2008;102(6):543–551. doi:10.1111/j.1742-7843.2008.00231.x
  • Kimura H, Tsuchiya H, Shirai T, Nishida H, Hayashi K, Takeuchi A, Ohnari I, Tomita K. Caffeine-potentiated chemotherapy for metastatic osteosarcoma. J Orthop Sci. 2009;14(5):556–565. doi:10.1007/s00776-009-1372-5
  • Motegi T, Katayama M, Uzuka Y, Okamura Y. Evaluation of anticancer effects and enhanced doxorubicin cytotoxicity of xanthine derivatives using canine hemangiosarcoma cell lines. Res Vet Sci. 2013;95(2):600–605. doi:10.1016/j.rvsc.2013.06.011
  • Baker JA, Beehler GP, Sawant AC, Jayaprakash V, McCann SE, Moysich KB. Consumption of coffee, but not black tea, is associated with decreased risk of premenopausal breast cancer. J Nutr. 2006;136(1):166–171. doi:10.1093/jn/136.1.166
  • Borenfreund E, Puerner JA. A simple quantitative procedure using monolayer cultures for cytotoxicity assays (HTD/NR-90). J Tissue Culture Methods. 1985;9:7–9. doi:10.1007/BF01666038
  • Dubrez L, Coll JL, Hurbin A, Solary E, Favrot MC. Caffeine sensitizes human H358 cell line to p53-mediated apoptosis by inducing mitochondrial translocation and conformational change of BAX protein. J Biol Chem. 2001;276(42):38980–38987. doi:10.1074/jbc.M102683200
  • Akimoto M, Iizuka M, Kanematsu R, Yoshida M, Takenaga K. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS One. 2015;10(5):e0126605. doi:10.1371/journal.pone.0126605,
  • Zhang Q, Cui C, Chen C-Q, Hu X-L, Liu Y-H, Fan Y-H, Meng W-H, Zhao Q-C. Anti-proliferative and pro-apoptotic activities of Alpinia oxyphylla on HepG2 cells through ROS-mediated signaling pathway. J Ethnopharmacol. 2015;169:99–108. doi:10.1016/j.jep.2015.03.073
  • Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014;2014:360438 doi: 10.1155/2014/360438,
  • Pilger A, Rüdiger HW. 8-Hydroxy-2'-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health. 2006;80(1):1–15. doi:10.1007/s00420-006-0106-7
  • Halliwell B, Aruoma OI. DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett. 1991;281(1-2):9–19. doi:10.1016/0014-5793(91)80347-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.