257
Views
12
CrossRef citations to date
0
Altmetric
Article

The Ferula Assa-foetida Essential Oil Nanoemulsion (FAEO-NE) as the Selective, Apoptotic, and Anti-Angiogenic Anticancer Compound in Human MCF-7 Breast Cancer Cells and Murine Mammary Tumor Models

, , , &
Pages 2196-2206 | Received 25 Mar 2021, Accepted 21 Sep 2021, Published online: 05 Oct 2021

References

  • Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–146. doi:10.1016/j.jconrel.2010.08.027
  • Blowman K, Magalhães M, Lemos M, Cabral C, Pires I. Anticancer properties of essential oils and other natural products. Evid Based Complement Alternat Med. 2018;2018:1–12. doi:10.1155/2018/3149362
  • Murakami A, Ohigashi H, Koshimizu K. Anti-tumor promotion with food phytochemicals: a strategy for cancer chemoprevention. Biosci Biotechnol Biochem. 1996;60(1):1–8. doi:10.1271/bbb.60.1
  • Bagheri SM, Sahebkar A, Gohari AR, Saeidnia S, Malmir M, Iranshahi M. Evaluation of cytotoxicity and anticonvulsant activity of some Iranian medicinal Ferula species. Pharm Biol. 2010;48(3):242–246. doi:10.3109/13880200903081796
  • Iranshahy M, Iranshahi M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin): a review. J Ethnopharmacol. 2011;134(1):1–10. doi:10.1016/j.jep.2010.11.067
  • Dehpour AA, Ebrahimzadeh MA, Fazel NS, Mohammad NS. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Aceites. 2009;60(4):405–412. doi:10.3989/gya.010109
  • Bagheri SM, Hedesh ST, Mirjalili A, Dashti-R MH. Evaluation of anti-inflammatory and some possible mechanisms of antinociceptive effect of Ferula assa foetida oleo gum resin. J Evid Based Complementary Altern Med. 2016;21(4):271–276. doi:10.1177/2156587215605903
  • Bagheri SM, Abdian-Asl A, Moghadam MT, Yadegari M, Mirjalili A, Zare-Mohazabieh F, Momeni H. Antitumor effect of Ferula assa foetida oleo gum resin against breast cancer induced by 4T1 cells in BALB/c mice. J Ayurveda Integr Med. 2017;8(3):152–158.
  • Daneshkazemi A, Zandi H, Davari A, Vakili M, Emtiazi M, Lotfi R, Masoumi SMR. Antimicrobial activity of the essential oil obtained from the seed and oleo-gum-resin of Ferula assa-foetida against oral pathogens. Front Dent. 2019;16:113–120. doi:10.18502/fid.v16i2.1362
  • Bagheri SM, Shahmohamadi A. Anticancer effect of essential oil of seed of Ferula assa-foetida on adenocarcinoma gastric cell line. IJCEP. 2020;7(3):96–99. doi:10.5530/ijcep.2020.7.3.24
  • Hou J, Zhang Y, Zhu Y, Zhou B, Ren C, Liang S, Guo Y. α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells. Med Sci Monit. 2019;25:6631–6638. doi:10.12659/MSM.916419
  • Kavoosi G, Rowshan V. Chemical composition, antioxidant and antimicrobial activities of essential oil obtained from Ferula assa-foetida oleo-gum-resin: effect of collection time. Food Chem. 2013;138(4):2180–2187. doi:10.1016/j.foodchem.2012.11.131
  • Azmi NAN, Elgharbawy AA, Motlagh SR, Samsudin N, Salleh HM. Nanoemulsions: factory for food, pharmaceutical and cosmetics. Processes. 2019;7(9):617. doi:10.3390/pr7090617
  • Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma MJ. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10(3-4):102–110. doi:10.1016/j.cocis.2005.06.004
  • Mahdi Jafari S, He Y, Bhandari B. Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop. 2006;9(3):475–485. doi:10.1080/10942910600596464
  • Date AA, Desai N, Dixit R, Nagarsenker M. Self-nanoemulsifying drug delivery systems: formulation insights, applications and advances. Nanomedicine (Lond). 2010;5(10):1595–1616. doi:10.2217/nnm.10.126
  • Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: a review. Prev Nutr Food Sci. 2019;24(3):225–234. doi:10.3746/pnf.2019.24.3.225
  • Qian C, McClements DJ. Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids. 2011;25(5):1000–1008. doi:10.1016/j.foodhyd.2010.09.017
  • Wasan KM. Role of lipid excipients in modifying oral and parenteral drug delivery: basic principles and biological examples. John Wiley & Sons; 2007.
  • Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R. Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev. 2004;56(9):1291–1314. doi:10.1016/j.addr.2003.12.006
  • Constantinides PP, Han J, Davis SS. Advances in the use of tocols as drug delivery vehicles. Pharm Res. 2006;23(2):243–255. doi:10.1007/s11095-005-9262-9
  • Constantinides PP, Chaubal MV, Shorr R. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv Drug Deliv Rev. 2008;60(6):757–767. doi:10.1016/j.addr.2007.10.013
  • Naseri MH, Mahdavi M, Davoodi J, Tackallou SH, Goudarzvand M, Neishabouri SH. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int. 2015;15:55. doi:10.1186/s12935-015-0204-2
  • Manoochehri M, Karbasi A, Bandehpour M, Kazemi B. Down-regulation of BAX gene during carcinogenesis and acquisition of resistance to 5-FU in colorectal cancer. Pathol Oncol Res. 2014;20(2):301–307. doi:10.1007/s12253-013-9695-0
  • Lin Y, Fukuchi J, Hiipakka RA, Kokontis JM, Xiang J. Up-regulation of Bcl-2 is required for the progression of prostate cancer cells from an androgen-dependent to an androgen-independent growth stage. Cell Res. 2007;17(6):531–536. doi:10.1038/cr.2007.12
  • Duffy AM, Bouchier-Hayes DJ, Harmey JH. Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: autocrine signalling by VEGF. In: Madame Curie Bioscience Database [Internet]. Landes Bioscience, 2013.
  • Ceci C, Atzori MG, Lacal PM, Graziani G. Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: experimental evidence in different metastatic cancer models. Int J Mol Sci. 2020;21:1388. doi:10.3390/ijms21041388
  • Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets. 2009;9(5):639–651. doi:10.2174/156800909789057006
  • Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014;2:17. doi:10.1186/2049-3002-2-17
  • Qian S, Golubnitschaja O, Zhan X. Chronic inflammation: key player and biomarker-set to predict and prevent cancer development and progression based on individualized patient profiles. EPMA J. 2019;10(4):365–381. doi:10.1007/s13167-019-00194-x
  • Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N. Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J Nanosci Nanotechnol. 2013;13(1):114–122. doi:10.1166/jnn.2013.6701
  • Klang V, Matsko NB, Valenta C, Hofer F. Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron. 2012;43(2-3):85–103. doi:10.1016/j.micron.2011.07.014
  • Yoon HJ, Zhang X, Kang MG, Kim GJ, Shin SY, Baek SH, Lee BN, Hong SJ, Kim JT, Hong K, et al. Cytotoxicity evaluation of turmeric extract incorporated oil-in-water nanoemulsion. Int J Mol Sci. 2018;19:280. doi:10.3390/ijms19010280
  • Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008;2008:pdb.prot4986. doi:10.1101/pdb.prot4986
  • Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409–427. doi:10.1007/s12551-016-0218-6
  • Salopek B, Krasic D, Filipovic S. Measurement and application of zeta-potential. Rudarsko-Geolosko-Naftni Zbornik. 1992;4:147.
  • Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Asaduzzaman Khan M, Sethi G. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9:735. doi:10.3390/biom9110735
  • Liu J, Wang Z. Increased oxidative stress as a selective anticancer therapy. Oxid Med Cell Longev. 2015;2015:294303. doi:10.1155/2015/294303
  • Ur Rashid H, Xu Y, Muhammad Y, Wang L, Jiang J. Research advances on anticancer activities of matrine and its derivatives: an updated overview. Eur J Med Chem. 2019;161:205–238. doi:10.1016/j.ejmech.2018.10.037
  • Reza KH. Nanoemulsion as a novel transdermal drug delivery system. Int J Pharm Sci Res. 1938;2:2011.
  • Ashfaq UA, Riaz M, Yasmeen E, Yousaf MZ. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst. 2017;34:257–282.
  • Klanova M, Klener P. BCL-2 proteins in pathogenesis and therapy of B-cell non-Hodgkin lymphomas. Cancers. 2020;12:938. doi:10.3390/cancers12040938
  • Stinson CA, Xia Y. Radical induced disulfide bond cleavage within peptides via ultraviolet irradiation of an electrospray plume. Analyst. 2013;138(10):2840–2846. doi:10.1039/c3an00303e
  • Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to modulate antitumor immunity. Front Immunol. 2018;9:978. doi:10.3389/fimmu.2018.00978

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.