224
Views
5
CrossRef citations to date
0
Altmetric
Articles

Inhibition of Glutamine Cellular Uptake Contributes to the Cytotoxic Effect of Xanthohumol in Triple-Negative Breast Cancer Cells

, & ORCID Icon
Pages 3413-3430 | Received 25 Oct 2021, Accepted 09 May 2022, Published online: 20 May 2022

References

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209–49. doi:10.3322/caac.21660
  • Krall AS, Christofk HR. Rethinking glutamine addiction. Nat Cell Biol. 2015;17(12):1515–7. doi:10.1038/ncb3278
  • Teixeira E, Silva C, Martel F. The role of the glutamine transporter asct2 in antineoplastic therapy. Cancer Chemother Pharmacol. 2021;87(4):447–64. doi:10.1007/s00280-020-04218-6
  • Still ER, Yuneva MO. Hopefully devoted to q: Targeting glutamine addiction in cancer. Br J Cancer. 2017;116(11):1375–81. doi:10.1038/bjc.2017.113
  • Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(1):11–31. doi:10.1038/nrclinonc.2016.60
  • Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47. doi:10.1016/j.cmet.2015.12.006
  • Daye D, Wellen KE. Metabolic reprogramming in cancer: Unraveling the role of glutamine in tumorigenesis. Semin Cell Dev Biol. 2012;23(4):362–9. doi:10.1016/j.semcdb.2012.02.002
  • Lopes C, Pereira C, Medeiros R. Asct2 and lat1 contribution to the hallmarks of cancer: From a molecular perspective to clinical translation. Cancers (Basel). 2021;13(2):203. doi:10.3390/cancers13020203
  • Zhou P, Liang X, Zhou C, Qin J, Hou C, Zhu Z, Zhang W, Wang S, Zhong D. Glutamine-β-cyclodextrin for targeted doxorubicin delivery to triple-negative breast cancer tumors via the transporter ASCT2. J Mater Chem B. 2019;7(35):5363–75. doi:10.1039/c9tb01225g
  • Rasouli H, Farzaei MH, Mansouri K, Mohammadzadeh S, Khodarahmi R. Plant cell cancer: May natural phenolic compounds prevent onset and development of plant cell malignancy? A literature review. Molecules. 2016;21(9):1104–30. doi:10.3390/molecules21091104
  • Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev. 2009;2(5):270–8. doi:10.4161/oxim.2.5.9498
  • Zhou Y, Zheng J, Li Y, Xu D-P, Li S, Chen Y-M, Li H-B. Natural polyphenols for prevention and treatment of cancer. Nutrients. 2016;8(8):515–50. doi:10.3390/nu8080515
  • Nichenametla SN, Taruscio TG, Barney DL, Exon JH. A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr. 2006;46(2):161–83. doi:10.1080/10408390591000541
  • Losada-Echeberria M, Herranz-Lopez M, Micol V, Barrajon CE. Polyphenols as promising drugs against main breast cancer signatures. Antioxidants (Basel). 2017;6(4):88–112. doi:10.3390/antiox6040088
  • Mocanu M-M, Nagy P, Szöllősi J. Chemoprevention of breast cancer by dietary polyphenols. Molecules. 2015;20(12):22578–620. doi:10.3390/molecules201219864
  • Ci Y, Qiao J, Han M. Molecular mechanisms and metabolomics of natural polyphenols interfering with breast cancer metastasis. Molecules. 2016;21(12):1634–61. doi:10.3390/molecules21121634
  • Moreira L, Araújo I, Costa T, Correia-Branco A, Faria A, Martel F, Keating E. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp Cell Res. 2013;319(12):1784–95. doi:10.1016/j.yexcr.2013.05.001
  • Azevedo C, Correia-Branco A, Araújo JR, Guimarães JT, Keating E, Martel F. The chemopreventive effect of the dietary compound kaempferol on the mcf-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr ­Cancer. 2015;67(3):504–13. doi:10.1080/01635581.2015.1002625
  • Araujo JR, Goncalves P, Martel F. Modulation of glucose uptake in a human choriocarcinoma cell line (bewo) by dietary bioactive compounds and drugs of abuse. J Biochem. 2008;144(2):177–86. doi:10.1093/jb/mvn054
  • Correia-Branco A, Azevedo CF, Araújo JR, Guimarães JT, Faria A, Keating E, Martel F. Xanthohumol impairs glucose uptake by a human first-trimester extravillous trophoblast cell line (htr-8/svneo cells) and impacts the process of placentation. Mol Hum Reprod. 2015;21(10):803–15. doi:10.1093/molehr/gav043
  • Andrade N, Araujo JR, Correia-Branco A, Carletti JV, Martel F. Effect of dietary polyphenols on fructose uptake by human intestinal epithelial (caco-2) cells. J Funct Foods. 2017;36:429–39. doi:10.1016/j.jff.2017.07.032
  • Faria A, Pestana D, Monteiro R, Oliveira J, Freitas V d, Azevedo I, Calhau C, Mateus N. Influence of anthocyanins and derivative pigments from blueberry (vaccinium myrtillus) extracts on MPP + intestinal uptake: A structure–activity approach. Food Chem. 2008;109(3):587–94. doi:10.1016/j.foodchem.2008.01.009
  • Keating E, Lemos C, Azevedo I, Martel F. Characteristics of thiamine uptake by the bewo human trophoblast cell line. J Biochem Mol Biol. 2006;39(4):383–93. doi:10.5483/bmbrep.2006.39.4.383
  • Lemos C, Peters GJ, Jansen G, Martel F, Calhau C. Modulation of folate uptake in cultured human colon adenocarcinoma caco-2 cells by dietary compounds. Eur J Nutr. 2007;46(6):329–36. doi:10.1007/s00394-007-0670-y
  • Keating E, Lemos C, Goncalves P, Martel F. Acute and chronic effects of some dietary bioactive compounds on folic acid uptake and on the expression of folic acid transporters by the human trophoblast cell line bewo. J Nutr Biochem. 2008;19(2):91–100. doi:10.1016/j.jnutbio.2007.01.007
  • Goncalves P, Araujo JR, Pinho MJ, Martel F. In vitro studies on the inhibition of colon cancer by butyrate and polyphenolic compounds. Nutr Cancer. 2011;63(2):282–94. doi:10.1080/01635581.2011.523166
  • Correia-Branco A, Keating E, Martel F. Arachidonic acid reverses xanthohumol-induced insufficiency in a human first-trimester extravillous trophoblast cell line (htr-8/svneo cells). Reprod Sci. 2018;25(9):1394–405. doi:10.1177/1933719117746762
  • Martel F, Guedes M, Keating E. Effect of polyphenols on glucose and lactate transport by breast cancer cells. Breast Cancer Res Treat. 2016;157(1):1–11. doi:10.1007/s10549-016-3794-z
  • Payen VL, Porporato PE, Danhier P, Vazeille T, Blackman M. catechin in a 1:2 complex with lysine inhibits cancer cell migration and metastatic take in mice. Front Pharmacol. 2017;8:869. (+)
  • Silva C, Correia-Branco A, Andrade N, Ferreira AC, Soares ML, Sonveaux P, Stephenne J, Martel F. Selective pro-apoptotic and antimigratory effects of polyphenol complex catechin:Lysine 1:2 in breast, pancreatic and colorectal cancer cell lines. Eur J Pharmacol. 2019;859:172533. doi:10.1016/j.ejphar.2019.172533
  • Bergmeyer HU, Bernt E. 1974. Lactate dehydrogenase. Uv-assay with pyruvate and nadh. In Methods of enzymatic analysis. (Press, A., Ed.), pp p. 574–578. New York: Elsevier.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. doi:10.1006/abio.1976.9999
  • Karunakaran S, Ramachandran S, Coothankandaswamy V, Elangovan S, Babu E, Periyasamy-Thandavan S, Gurav A, Gnanaprakasam JP, Singh N, Schoenlein PV, et al. Slc6a14 (atb0,+) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor-positive breast cancer. J Biol Chem. 2011;286(36):31830–8. doi:10.1074/jbc.M111.229518
  • Nalecz KA. Amino acid transporter slc6a14 (atb(0,+)) - a target in combined anti-cancer therapy. Front Cell Dev Biol. 2020;8:594464.
  • Müller A, Chiotellis A, Keller C, Ametamey SM, Schibli R, Mu L, Krämer SD. Imaging tumour atb0,+ transport activity by pet with the cationic amino acid o-2((2-[18f]fluoroethyl)methyl-amino)ethyltyrosine. Mol Imaging Biol. 2014;16(3):412–20. doi:10.1007/s11307-013-0711-2
  • Karunakaran S, Umapathy NS, Thangaraju M, Hatanaka T, Itagaki S, Munn DH, Prasad PD, Ganapathy V. Interaction of tryptophan derivatives with slc6a14 (atb0,+) reveals the potential of the transporter as a drug target for cancer chemotherapy. Biochem J. 2008;414(3):343–55. doi:10.1042/BJ20080622
  • Chiu M, Sabino C, Taurino G, Bianchi MG, Andreoli R, Giuliani N, Bussolati O. GPNA inhibits the sodium-independent transport system l for neutral amino acids. Amino Acids. 2017;49(8):1365–72. doi:10.1007/s00726-017-2436-z
  • Liu Y, Zhao T, Li Z, Wang L, Yuan S, Sun L. The role of asct2 in cancer: A review. Eur J Pharmacol. 2018;837:81–7. doi:10.1016/j.ejphar.2018.07.007
  • Cha YJ, Kim ES, Koo JS. Amino acid transporters and glutamine metabolism in breast cancer. IJMS. 2018;19(3):907–24. doi:10.3390/ijms19030907
  • Broer A, Rahimi F, Broer S. Deletion of amino acid transporter asct2 (slc1a5) reveals an essential role for transporters snat1 (slc38a1) and snat2 (slc38a2) to sustain glutaminolysis in cancer cells. J Biol Chem. 2016;291(25):13194–205. doi:10.1074/jbc.M115.700534
  • Wang K, Cao F, Fang W, Hu Y, Chen Y, Ding H, Yu G. Activation of snat1/slc38a1 in human breast cancer: Correlation with p-akt overexpression. BMC Cancer. 2013;13:343. doi:10.1186/1471-2407-13-343
  • Prat A, Cruz C, Hoadley KA, Díez O, Perou CM, Balmaña J. Molecular features of the basal-like breast cancer subtype based on brca1 mutation status. Breast Cancer Res Treat. 2014;147(1):185–91. doi:10.1007/s10549-014-3056-x
  • van Geldermalsen M, Wang Q, Nagarajah R, Marshall AD, Thoeng A, Gao D, Ritchie W, Feng Y, Bailey CG, Deng N, et al. Asct2/slc1a5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene. 2016;35(24):3201–8. doi:10.1038/onc.2015.381
  • Kim SY, Lee IS, Moon A. 2-hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells. Chem Biol Interact. 2013;203(3):565–72. doi:10.1016/j.cbi.2013.03.012
  • Bartmańska A, Tronina T, Popłoński J, Milczarek M, Filip-Psurska B, Wietrzyk J. Highly cancer selective antiproliferative activity of natural prenylated flavonoids. Molecules. 2018;23(11):2922–36. doi:10.3390/molecules23112922
  • Tronina T, Bartmańska A, Filip-Psurska B, Wietrzyk J, Popłoński J, Huszcza E. Fungal metabolites of xanthohumol with potent antiproliferative activity on human cancer cell lines in vitro. Bioorg Med Chem. 2013;21(7):2001–6. doi:10.1016/j.bmc.2013.01.026
  • Sun Z, Zhou C, Liu F, Zhang W, Chen J, Pan Y, Ma Lianqing, Liu Q, Du Y, Yang J, et al. Inhibition of breast cancer cell survival by xanthohumol via modulation of the notch signaling pathway in vivo and in vitro. Oncol Lett. 2018;15(1):908–16. doi:10.3892/ol.2017.7434
  • Yoo YB, Park KS, Kim JB, Kang HJ, Yang JH, Lee EK, Kim HY. Xanthohumol inhibits cellular proliferation in a breast cancer cell line (mda-mb231) through an intrinsic mitochondrial-dependent pathway. Indian J Cancer. 2014;51(4):518–23. doi:10.4103/0019-509X.175328
  • Gazzola RF, Sala R, Bussolati O, Visigalli R, Dall’Asta V, Ganapathy V, Gazzola GC. The adaptive regulation of amino acid transport system a is associated to changes in ata2 expression. FEBS Lett. 2001;490(1-2):11–4. doi:10.1016/S0014-5793(01)02126-3
  • Franchi-Gazzola R, Dall’Asta V, Sala R, Visigalli R, Bevilacqua E, Gaccioli F, Gazzola GC, Bussolati O. The role of the neutral amino acid transporter snat2 in cell volume regulation. Acta Physiol (Oxf). 2006;187(1-2):273–83. doi:10.1111/j.1748-1716.2006.01552.x
  • Morotti M, Zois CE, El-Ansari R, Craze ML, Rakha EA, Fan S-J, Valli A, Haider S, Goberdhan DCI, Green AR, et al. Increased expression of glutamine transporter snat2/slc38a2 promotes glutamine dependence and oxidative stress resistance, and is associated with worse prognosis in triple-negative breast cancer. Br J Cancer. 2021;124(2):494–505. doi:10.1038/s41416-020-01113-y
  • Morotti M, Bridges E, Valli A, Choudhry H, Sheldon H, Wigfield S, Gray N, Zois CE, Grimm F, Jones D, et al. Hypoxia-induced switch in snat2/slc38a2 regulation generates endocrine resistance in breast cancer. Proc Natl Acad Sci U S A. 2019;116(25):12452–61. doi:10.1073/pnas.1818521116
  • Freidman N, Chen I, Wu Q, Briot C, Holst J, Font J, Vandenberg R, Ryan R. Amino acid transporters and exchangers from the slc1a family: Structure, mechanism and roles in physiology and cancer. Neurochem Res. 2020;45(6):1268–86. doi:10.1007/s11064-019-02934-x
  • Marshall AD, van Geldermalsen M, Otte NJ, Lum T, Vellozzi M, Thoeng A, Pang A, Nagarajah R, Zhang B, Wang Q, et al. Asct2 regulates glutamine uptake and cell growth in endometrial carcinoma. Oncogenesis. 2017;6(7):e367–e377. doi:10.1038/oncsis.2017.70
  • Wang L, Liu Y, Zhao T-L, Li Z-Z, He J-Y, Zhang B-J, Du H-Z, Jiang J-W, Yuan S-T, Sun L, et al. Topotecan induces apoptosis via asct2 mediated oxidative stress in gastric cancer. Phytomedicine. 2019;57:117–28. doi:10.1016/j.phymed.2018.12.011
  • Gianni L, Norton L, Wolmark N, Suter TM, Bonadonna G, Hortobagyi GN. Role of anthracyclines in the treatment of early breast cancer. J Clin Oncol. 2009;27(28):4798–808. doi:10.1200/JCO.2008.21.4791
  • Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, Moreira PI. Doxorubicin: The good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267–85. doi:10.2174/092986709788803312
  • Liu M, Yin H, Qian X, Dong J, Qian Z, Miao J. Xanthohumol, a prenylated chalcone from hops, inhibits the viability and stemness of doxorubicin-resistant mcf-7/adr cells. Molecules. 2016;22(1):36–48. doi:10.3390/molecules22010036
  • Monteiro R, Calhau C, Martel F, Faria A, Mateus N, Azevedo I. Modulation of MPP + uptake by tea and some of its components in caco-2 cells. Naunyn Schmiedebergs Arch Pharmacol. 2005;372(2):147–52. doi:10.1007/s00210-005-0012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.