160
Views
0
CrossRef citations to date
0
Altmetric
Article

Pro-Oxidant and Cytotoxic Effects of Tucum-Do-Cerrado (Bactris setosa Mart.) Extracts in Colorectal Adenocarcinoma Caco-2 Cells

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3723-3734 | Received 16 Jun 2021, Accepted 02 Jun 2022, Published online: 15 Jun 2022

References

  • WHO. 2018. Cancer. [accessed 2021 Jun 1]. https://www.who.int/news-room/fact-sheets/detail/cancer.
  • Negri E, La Vecchia C, Franceschi S, D’Avanzo B, Talamini R, Parpinel M, Ferraroni M, Filiberti R, Montella M, Falcini F, et al. Intake of selected micronutrients and the risk of breast cancer. Int. J. Cancer. 1996;65(2):140–144. doi:10.1002/(SICI)1097-0215(19960117)65:2 < 140::AID-IJC3 > 3.0.CO;2-Z
  • Corrêa Lima MP, Gomes-Da-Silva MHG. Colorectal cancer: lifestyle and dietary factors. Nutr Hosp. 2005;20(4):235–241.
  • Chan AT, Giovannucci EL. Primary prevention of colorectal cancer. Gastroenterology. 2010;138(6):2029–2043.e10. doi:10.1053/j.gastro.2010.01.057
  • Cho YA, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Genetic risk score, combined lifestyle factors and risk of colorectal cancer. Cancer Res Treat. 2019;51(3):1033–1040. doi:10.4143/crt.2018.447
  • Duthie GG, Duthie SJ, Kyle JAM. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev. 2000;13(1):79–106. doi:10.1079/095442200108729016
  • Mileo AM, Miccadei S. Polyphenols as modulator of oxidative stress in cancer disease: new therapeutic strategies. Oxid Med Cell Longev. 2016;2016:6475624. doi:10.1155/2016/6475624
  • León-González AJ, Auger C, Schini-Kerth VB. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochem Pharmacol. 2015;98(3):371–380. doi:10.1016/j.bcp.2015.07.017
  • Bhat SH, Azmi AS, Hadi SM. Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: involvement of endogenous copper and a putative mechanism for anticancer properties. Toxicol Appl Pharmacol. 2007;218(3):249–255. doi:10.1016/j.taap.2006.11.022
  • Jiricny J, Marra G. DNA repair defects in colon cancer. Curr Opin Genet Dev. 2003;13(1):61–69. doi:10.1016/S0959-437X(03)00004-2
  • Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Welsh W, Yang CS. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63(22):7563–7570.
  • Gao K, Henning SM, Niu Y, Youssefian AA, Seeram NP, Xu A, Heber D. The citrus flavonoid naringenin stimulates DNA repair in prostate cancer cells. J Nutr Biochem. 2006;17(2):89–95. doi:10.1016/j.jnutbio.2005.05.009
  • Siqueira EMdA, Rosa FR, Fustinoni AM, de Sant’Ana LP, Arruda SF. Brazilian savanna fruits contain higher bioactive compounds content and higher antioxidant activity relative to the conventional red delicious apple. PLoS One. 2013;8(8):e72826–8. doi:10.1371/journal.pone.0072826
  • Boeing JS, Ribeiro D, Chisté RC, Visentainer JV, Costa VM, Freitas M, Fernandes E. Chemical characterization and protective effect of the Bactris setosa Mart. fruit against oxidative/nitrosative stress. Food Chem. 2017;220:427–437. doi:10.1016/j.foodchem.2016.09.188
  • Rosa FR, Arruda AF, Siqueira EMA, Arruda SF . Phytochemical compounds and antioxidant capacity of tucum-do-cerrado (Bactris setosa mart), Brazil’s Native Fruit. Nutrients. 2016;8(3):110. doi:10.3390/nu8030110
  • Fustinoni-Reis AM, Arruda SF, Dourado LPS, da Cunha MSB, Siqueira EMA. Tucum-do-cerrado (Bactris setosa mart.) consumption modulates iron homeostasis and prevents iron-induced oxidative stress in the Rat Liver. Nutrients. 2016;8(2):38. doi:10.3390/nu8020038
  • Heibel AB, da Cunha MdS, Ferraz CTS, Arruda SF. Tucum-do-cerrado (Bactris setosa Mart.) may enhance hepatic glucose response by suppressing gluconeogenesis and upregulating Slc2a2 via AMPK pathway, even in a moderate iron supplementation condition. Food Res Int. 2018;113:433–442. doi:10.1016/j.foodres.2018.07.032
  • da Cunha M, Arruda S. Tucum-do-cerrado (Bactris setosa Mart.) may promote anti-aging effect by upregulating SIRT1-Nrf2 pathway and attenuating oxidative stress and inflammation. Nutrients. 2017;9(11):1243. doi:10.3390/nu9111243
  • Sambuy Y, De Angelis I, Ranaldi G, Scarino ML, Stammati A, Zucco F . The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol. 2005;21(1):1–26. doi:10.1007/s10565-005-0085-6
  • Gonçalves AC, Rodrigues M, Santos AO, Alves G, Silva LR. Antioxidant status, antidiabetic properties and effects on Caco-2 cells of colored and non-colored enriched extracts of sweet cherry fruits. Nutrients. 2018;10(11):1688. doi:10.3390/nu10111688
  • Matusiewicz M, Bączek KB, Kosieradzka I, Niemiec T, Grodzik M, Szczepaniak J, Orlińska S, Węglarz Z. Effect of juice and extracts from Saposhnikovia divaricata root on the colon cancer cells Caco-2. IJMS. 2019;20(18):4526. doi:10.3390/ijms20184526
  • Boulaaba M, Mkadmini K, Tsolmon S, Han J, Smaoui A, Kawada K, Ksouri R, Isoda H, Abdelly C. In vitro antiproliferative effect of arthrocnemum indicum extracts on CACO-2 cancer cells through cell cycle control and related phenol LC-TOF-MS identification. Evid Based Complement Alternat Med. 2013;2013:529375. doi:10.1155/2013/529375
  • Engelbrecht A-M, Mattheyse M, Ellis B, Loos B, Thomas M, Smith R, Peters S, Smith C, Myburgh K. Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer Lett. 2007;258(1):144–153. doi:10.1016/j.canlet.2007.08.020
  • Atsumi T, Fujisawa S, Tonosaki K. A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicol in Vitro. 2005;19(8):1025–1033. doi:10.1016/j.tiv.2005.04.012
  • Sani HA, Rahmat A, Ismail M, Rosli R, Endrini S. Potential anticancer effect of red spinach (Amaranthus gangeticus) extract. Asia Pac J Clin Nutr. 2004;13:396–400. doi:10.1111/(ISSN)1440-6047/
  • Silva AM, Martins-Gomes C, Fangueiro JF, Andreani T, Souto EB. Comparison of antiproliferative effect of epigallocatechin gallate when loaded into cationic solid lipid nanoparticles against different cell lines. Pharm Dev Technol. 2019;24(10):1243–1249. doi:10.1080/10837450.2019.1658774
  • Yu Y, Deng Y, Lu BM, Liu YX, Li J, Bao JK. Green tea catechins: a fresh flavor to anticancer therapy. Apoptosis. 2014;19(1):1–18. doi:10.1007/s10495-013-0908-5
  • Shih PH, Yeh CT, Yen GC. Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food Chem Toxicol. 2005;43(10):1557–1566. doi:10.1016/j.fct.2005.05.001
  • Zhang Y, Vareed SK, Nair MG. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci. 2005;76(13):1465–1472. doi:10.1016/j.lfs.2004.08.025
  • Moore J, Yousef M, Tsiani E. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients. 2016;8(11):731. doi:10.3390/nu8110731
  • Stevens JF, Revel JS, Maier CS. Mitochondria-centric review of polyphenol bioactivity in cancer models. Antioxid Redox Signal. 2018;29(16):1589–1611. doi:10.1089/ars.2017.7404
  • Hornik P, Milde D, Trenz Z, Vysloužil K, Stužka V. Colon tissue concentrations of copper, iron, selenium, and zinc in colorectal carcinoma patients. Chem Pap. 2006;60:297–301. doi:10.2478/s11696-006-0052-6
  • Sutton HC, Winterbourn CC. On the participation of higher oxidation states of iron and copper in fenton reactions. Free Radic Biol Med. 1989;6(1):53–60. doi:10.1016/0891-5849(89)90160-3
  • Ahmad A, Syed FA, Singh S, Hadi SM. Prooxidant activity of resveratrol in the presence of copper ions: mutagenicity in plasmid DNA. Toxicol Lett. 2005;159(1):1–12. doi:10.1016/j.toxlet.2005.04.001
  • Lambert JD, E RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010;501(1):65–72. doi:10.1016/j.abb.2010.06.013
  • Elbling L, Weiss R-M, Teufelhofer O, Uhl M, Knasmueller S, Schulte-Hermann R, Berger W, Micksche M. Green tea extract and (−)‐epigallocatechin‐3‐gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J. 2005;19(7):1–26. doi:10.1096/fj.04-2915fje
  • Forester SC, Lambert JD . The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol Nutr Food Res. 2011;55(6):844–854. doi:10.1002/mnfr.201000641
  • Oikawa S, Furukawa A, Asada H, Hirakawa K, Kawanishi S. Catechins induce oxidative damage to cellular and isolated DNA through the generation of reactive oxygen species. Free Radic Res. 2003;37(8):881–890. doi:10.1080/1071576031000150751
  • Mármol I, Jiménez-Moreno N, Ancín-Azpilicueta C, Osada J, Cerrada E, Rodríguez-Yoldi MJ. A combination of Rosa canina extracts and gold complex favors apoptosis of caco-2 cells by increasing oxidative stress and mitochondrial dysfunction. Antioxidants. 2019;9(1):17–2. doi:10.3390/antiox9010017
  • Jiménez S, Gascón S, Luquin A, Laguna M, Ancin-Azpilicueta C, Rodríguez-Yoldi MJ. Rosa canina extracts have antiproliferative and antioxidant effects on Caco-2 human colon cancer. PLoS One. 2016;11(7):e0159136–14. doi:10.1371/journal.pone.0159136
  • Ho IYM, Abdul Aziz A, Mat Junit S. Evaluation of anti-proliferative effects of barringtonia racemosa and gallic acid on Caco-2 cells. Sci Rep. 2020;10(1):1–13. doi:10.1038/s41598-020-66913-x
  • Nallathambi R, Poulev A, Zuk JB, R I. Proanthocyanidin-rich grape seed extract reduces inflammation and oxidative stress and restores tight junction barrier function in Caco-2 colon cells. Nutrients. 2020;12(6):1623. doi:10.3390/nu12061623
  • Aherne SA, Kerry JP, O’Brien NM. Effects of plant extracts on antioxidant status and oxidant-induced stress in Caco-2 cells. Br J Nutr. 2007;97(2):321–328. doi:10.1017/S0007114507250469
  • Ma Q. Role of Nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–426. doi:10.1146/annurev-pharmtox-011112-140320
  • Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39(4):199–218. doi:10.1016/j.tibs.2014.02.002
  • Schmidt HHHW, Stocker R, Vollbracht C, Paulsen G, Riley D, Daiber A, Cuadrado A. Antioxidants in translational medicine. Antioxid Redox Signal. 2015;23(14):1130–1143. doi:10.1089/ars.2015.6393
  • Huang Y, Li W, Su Z y, Kong ANT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem. 2015;26(12):1401–1413. doi:10.1016/j.jnutbio.2015.08.001
  • Chen G, Gharib TG, Huang C-C, Taylor JM, Misek DE, Kardia SL, Giordano TJ, Iannettoni MD, Orringer MB, Hanash SM, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics. 2002;1(4):304–313. doi:10.1074/mcp.M200008-MCP200
  • Kweon MH, Adhami VM, Lee JS, Mukhtar H. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J Biol Chem. 2006;281(44):33761–33772. doi:10.1074/jbc.M604748200
  • Ratcliffe PJ, O’Rourke JF, Maxwell PH, Pugh CW. Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol. 1998;201(Pt 8):1153–1162. doi:10.1242/jeb.201.8.1153
  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A. 1998;95(20):11715–11720. doi:10.1073/pnas.95.20.11715
  • Chandel SN, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM. Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell. 2001;12:323–337. doi:10.1091/mbc.12.2.323
  • Chandel NS, McClintock DS, Feliciano CE, W TM, Melendez JA, Rodriguez AM, S PT . Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275(33):25130–25138. doi:10.1074/jbc.M001914200
  • Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 2005;1(6):409–414. doi:10.1016/j.cmet.2005.05.002
  • Pryor WA, Squadrito GL. The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide. Am J Physiol. 1995;268(5 Pt 1):L699–L722. doi:10.1152/ajplung.1995.268.5.L699
  • Xi X, Wang J, Qin Y, You Y, Huang W, Zhan J. The biphasic effect of flavonoids on oxidative stress and cellproliferation in breast cancer cells. Antioxidants. 2022;11(4):622. doi:10.3390/antiox11040622

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.