161
Views
4
CrossRef citations to date
0
Altmetric
Article

Fucoxanthin Inactivates the PI3K/Akt Signaling Pathway to Mediate Malignant Biological Behaviors of Non-Small Cell Lung Cancer

, , , , , , , , , , , & show all
Pages 3747-3760 | Received 07 Oct 2021, Accepted 12 Jun 2022, Published online: 15 Jul 2022

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Gettinger S, Horn L, Jackman D, Spigel D, Antonia S, Hellmann M, Powderly J, Heist R, Sequist LV, Smith DC, et al. Five-year follow-up of nivolumab in previously treated advanced non-small-cell lung cancer: results from the CA209-003 study. J Clin Oncol. 2018;36(17):1675–84. doi:10.1200/JCO.2017.77.0412
  • Yi AX, Leung PT, Leung KM. Photosynthetic and molecular responses of the marine diatom Thalassiosira pseudonana to triphenyltin exposure. Aquat Toxicol. 2014;154:48–57. doi:10.1016/j.aquatox.2014.05.004
  • Okuzumi J, Takahashi T, Yamane T, Kitao Y, Inagake M, Ohya K, Nishino H, Tanaka Y. Inhibitory effects of fucoxanthin, a natural carotenoid, on N-ethyl-N’-nitro-N-nitrosoguanidine-induced mouse duodenal carcinogenesis. Cancer Lett. 1993;68(2-3):159–68. doi:10.1016/0304-3835(93)90142-v
  • Terasaki M, Ikuta M, Kojima H, Tanaka T, Maeda H, Miyashita K, Mutoh M. Dietary fucoxanthin induces anoikis in colorectal adenocarcinoma by suppressing integrin signaling in a murine colorectal cancer model. JCM. 2019;9(1):90. doi:10.3390/jcm9010090
  • Tamura S, Narita T, Fujii G, Miyamoto S, Hamoya T, Kurokawa Y, Takahashi M, Miki K, Matsuzawa Y, Komiya M, et al. Inhibition of NF-kappaB transcriptional activity enhances fucoxanthinol-induced apoptosis in colorectal cancer cells. Genes Environ. 2019;41:1. doi:10.1186/s41021-018-0116-1
  • Ye G, Wang L, Yang K, Wang C. Fucoxanthin may inhibit cervical cancer cell proliferation via downregulation of HIST1H3D. J Int Med Res. 2020;48(10):300060520964011. doi:10.1177/0300060520964011
  • Kotake-Nara E, Asai A, Nagao A. Neoxanthin and fucoxanthin induce apoptosis in PC-3 human prostate cancer cells. Cancer Lett. 2005;220:5–84.
  • Long Y, Cao X, Zhao R, Gong S, Jin L, Feng C. Fucoxanthin treatment inhibits nasopharyngeal carcinoma cell proliferation through induction of autophagy mechanism. Environ Toxicol. 2020;35(10):1082–90. doi:10.1002/tox.22944
  • Swadesh JK, Mui PW, Scheraga HA. Thermodynamics of the quenching of tyrosyl fluorescence by dithiothreitol. Biochemistry. 1987;26(18):5761–9. doi:10.1021/bi00392a027
  • Mei J, Liu G, Wang W, Xiao P, Yang D, Bai H, Li R. OIP5-AS1 modulates epigenetic regulator HDAC7 to enhance non-small cell lung cancer metastasis via miR-140-5p. Oncol Lett. 2020;20(4):7. doi:10.3892/ol.2020.11868
  • Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T, Miyashita K. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARgamma ligand, troglitazone, on colon cancer cells. Biochim Biophys Acta. 2004;1675(1–3):113–9. doi:10.1016/j.bbagen.2004.08.012
  • Maeda H, Fukuda S, Izumi H, Saga N. Anti-Oxidant and Fucoxanthin Contents of Brown Alga Ishimozuku (Sphaerotrichia divaricata) from the West Coast of Aomori, Japan. Mar Drugs. 2018;16(8):255. doi:10.3390/md16080255
  • Heo SJ, Jeon YJ. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J Photochem Photobiol B. 2009;95(2):101–7. doi:10.1016/j.jphotobiol.2008.11.011
  • Galasso C, Corinaldesi C, Sansone C. Carotenoids from marine organisms: biological functions and industrial applications. Antioxidants. 2017;6(4):96. doi:10.3390/antiox6040096
  • Chen S-J, Lee C-J, Lin T-B, Peng H-Y, Liu H-J, Chen Y-S, Tseng K-W. Protective effects of fucoxanthin on ultraviolet B-induced corneal denervation and inflammatory pain in a rat model. Mar Drugs. 2019;17(3):152. doi:10.3390/md17030152
  • Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem. 2007;55(21):8516–22. doi:10.1021/jf071848a
  • Koo SY, Hwang J-H, Yang S-H, Um J-I, Hong KW, Kang K, Pan C-H, Hwang KT, Kim SM. Anti-obesity effect of standardized extract of microalga Phaeodactylum tricornutum containing fucoxanthin. Mar Drugs. 2019;17(5):311. doi:10.3390/md17050311
  • Muradian K, Vaiserman A, Min KJ, Fraifeld VE. Fucoxanthin and lipid metabolism: A minireview. Nutr Metab Cardiovasc Dis. 2015;25(10):891–7. doi:10.1016/j.numecd.2015.05.010
  • Gammone MA, D’Orazio N. Anti-obesity activity of the marine carotenoid fucoxanthin. Mar Drugs. 2015;13(4):2196–214. doi:10.3390/md13042196
  • Bae M, Kim MB, Park YK, Lee JY. Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(11):158618. doi:10.1016/j.bbalip.2020.158618
  • Zhang L, Wang H, Fan Y, Gao Y, Li X, Hu Z, Ding K, Wang Y, Wang X. Fucoxanthin provides neuroprotection in models of traumatic brain injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci Rep. 2017;7:46763. doi:10.1038/srep46763
  • Zheng J, Tian X, Zhang W, Zheng P, Huang F, Ding G, Yang Z. Protective effects of fucoxanthin against alcoholic liver injury by activation of Nrf2-mediated antioxidant defense and inhibition of TLR4-mediated inflammation. Marine Drugs. 2019;17(10):552. doi:10.3390/md17100552
  • Hudlikar RR, Sargsyan D, Li W, Wu R, Zheng M, Kong A-N. Epigenomic, transcriptomic, and protective effect of carotenoid fucoxanthin in high glucose-induced oxidative stress in Mes13 kidney mesangial cells. Chem Res Toxicol. 2021;34(3):713–22. doi:10.1021/acs.chemrestox.0c00235
  • El Bakary NM, Thabet NM, El Fatih NM, Abdel-Rafei MK, El Tawill G, Azab KS. Fucoxanthin alters the apelin-13/APJ pathway in certain organs of γ-irradiated mice. J Radiat Res. 2021;62(4):600–17. doi:10.1093/jrr/rraa141
  • Mei C, Zhou S, Zhu L, Ming J, Zeng F, Xu R. Antitumor Effects of laminaria extract fucoxanthin on lung cancer. Mar Drugs. 2017;15(2):39. doi:10.3390/md15020039
  • Chen W, Zhang H, Liu Y. Anti-inflammatory and apoptotic signaling effect of fucoxanthin on Benzo(A)Pyrene-induced lung cancer in mice. J Environ Pathol Toxicol Oncol. 2019;38(3):239–51. doi:10.1615/JEnvironPatholToxicolOncol.2019030301
  • Horsfall AJ, Abell AD, Bruning JB. Targeting PCNA with peptide mimetics for therapeutic purposes. Chembiochem. 2020;21(4):442–50. doi:10.1002/cbic.201900275
  • Yu RX, Yu RT, Liu Z. Inhibition of two gastric cancer cell lines induced by fucoxanthin involves downregulation of Mcl-1 and STAT3. Hum Cell. 2018;31(1):50–63. doi:10.1007/s13577-017-0188-4
  • Gangadhar KN, Rodrigues MJ, Pereira H, Gaspar H, Malcata FX, Barreira L, Varela J. Anti-hepatocellular carcinoma (HepG2) activities of monoterpene hydroxy lactones isolated from the marine microalga tisochrysis lutea. Marine Drugs. 2020;18(11):567. doi:10.3390/md18110567
  • Malhao F, Macedo AC, Costa C, Rocha E, Ramos AA. Fucoxanthin holds potential to become a drug adjuvant in breast cancer treatment: evidence from 2D and 3D cell cultures. Molecules. 2021;26(14):4288. doi:10.3390/molecules26144288
  • Sui Y, Gu Y, Lu Y, Yu C, Zheng J, Qi H. Fucoxanthin@Polyvinylpyrrolidone nanoparticles promoted oxidative stress-induced cell death in Caco-2 human colon cancer cells. Mar Drugs. 2021;19(2):92. doi:10.3390/md19020092
  • Moreau D, Tomasoni C, Jacquot C, Kaas R, Le Guedes Roland, Cadoret J-P, Muller-Feuga A, Kontiza I, Vagias C, Roussis V, et al. Cultivated microalgae and the carotenoid fucoxanthin from Odontella aurita as potent anti-proliferative agents in bronchopulmonary and epithelial cell lines. Environ Toxicol Pharmacol. 2006;22(1):97–103. doi:10.1016/j.etap.2006.01.004
  • Saitoh M. Involvement of partial EMT in cancer progression. J Biochem. 2018;164(4):257–64. doi:10.1093/jb/mvy047
  • Ming JX, Wang ZC, Huang Y, Ohishi H, Wu RJ, Shao Y, Wang H, Qin MY, Wu ZL, Li YY, et al. Fucoxanthin extracted from Laminaria Japonica inhibits metastasis and enhances the sensitivity of lung cancer to Gefitinib. J Ethnopharmacol. 2021;265:113302. doi:10.1016/j.jep.2020.113302
  • Rwigemera A, Mamelona J, Martin LJ. Inhibitory effects of fucoxanthinol on the viability of human breast cancer cell lines MCF-7 and MDA-MB-231 are correlated with modulation of the NF-kappaB pathway. Cell Biol Toxicol. 2014;30(3):157–67. doi:10.1007/s10565-014-9277-2
  • Wang J, Ma Y, Yang J, Jin L, Gao Z, Xue L, Hou L, Sui L, Liu J, Zou X, et al. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer. J Cell Mol Med. 2019;23(3):2219–29. doi:10.1111/jcmm.14151
  • Jin Y, Qiu S, Shao N, Zheng J. Fucoxanthin and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically promotes apoptosis of human cervical cancer cells by targeting PI3K/Akt/NF-κB signaling pathway. Med Sci Monit. 2018;24:11–8. doi:10.12659/msm.905360
  • Laussmann MA, Passante E, Hellwig CT, Tomiczek B, Flanagan L, Prehn JHM, Huber HJ, Rehm M. Proteasome inhibition can impair caspase-8 activation upon submaximal stimulation of apoptotic tumor necrosis factor-related apoptosis inducing ligand (TRAIL) signaling. J Biol Chem. 2012;287(18):14402–11. doi:10.1074/jbc.M111.304378
  • From the American Association of Neurological Surgeons ASoNC, Interventional Radiology Society of Europe CIRACoNSESoMINTESoNESOSfCA, Interventions SoIRSoNS, World Stroke O, Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO), et al. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke. 2018;13(6):612–32.
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–90. doi:10.1038/nchembio.118
  • Xue G, Restuccia DF, Lan Q, Hynx D, Dirnhofer S, Hess D, Rüegg C, Hemmings BA. Akt/PKB-mediated phosphorylation of Twist1 promotes tumor metastasis via mediating cross-talk between PI3K/Akt and TGF-beta signaling axes. Cancer Discov. 2012;2(3):248–59. doi:10.1158/2159-8290.CD-11-0270
  • Polivka J, Jr., Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142(2):164–75. doi:10.1016/j.pharmthera.2013.12.004
  • Tan J, Yu Q. Molecular mechanisms of tumor resistance to PI3K-mTOR-targeted therapy. Chin J Cancer. 2013;32(7):376–9. doi:10.5732/cjc.012.10287
  • Yang C, Hu J-F, Zhan Q, Wang Z-W, Li G, Pan J-J, Huang L, Liao C-Y, Huang Y, Tian Y-F, et al. SHCBP1 interacting with EOGT enhances O-GlcNAcylation of NOTCH1 and promotes the development of pancreatic cancer. Genomics. 2021;113(2):827–42. doi:10.1016/j.ygeno.2021.01.010
  • Zhong Z, Fu X, Li H, Chen J, Wang M, Gao S, Zhang L, Cheng C, Zhang Y, Li P, et al. Citicoline protects auditory hair cells against neomycin-induced damage. Front Cell Dev Biol. 2020;8:712. doi:10.3389/fcell.2020.00712
  • Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–33. doi:10.1038/nprot.2007.30
  • Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, Dolznig H. In vitro cell migration and invasion assays. Mutat Res. 2013;752(1):10–24. doi:10.1016/j.mrrev.2012.08.001
  • Liu Y, Yang S, Li M-Y, Huang R, Ng CSH, Wan IYP, Long X, Wu J, Wu B, Du J, et al. Tumorigenesis of smoking carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is related to its ability to stimulate thromboxane synthase and enhance stemness of non-small cell lung cancer stem cells. Cancer Lett. 2016;370(2):198–206. doi:10.1016/j.canlet.2015.10.017
  • Liu Z, Guo F, Wang Y, Li C, Zhang X, Li H, Diao L, Gu J, Wang W, Li D, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechANism of traditional Chinese Medicine. Sci Rep. 2016;6:21146. doi:10.1038/srep21146
  • Fang S, Dong L, Liu L, Guo J, Zhao L, Zhang J, Bu D, Liu X, Huo P, Cao W, et al. HERB: a high-throughput experiment- and reference-guided database of traditional Chinese medicine. Nucleic Acids Res. 2021;49(D1):D1197–D1206. doi:10.1093/nar/gkaa1063
  • Meresse S, Fodil M, Fleury F, Chenais B. Fucoxanthin, a marine-derived carotenoid from brown seaweeds and microalgae: a promising bioactive compound for cancer therapy. IJMS. 2020;21(23):9273. doi:10.3390/ijms21239273
  • Martin LJ. Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Mar Drugs. 2015;13(8):4784–98. doi:10.3390/md13084784
  • Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J, Gershoni M, Morrey CP, Safran M, Lancet D, et al. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 2017;45(D1):D877–D887. doi:10.1093/nar/gkw1012
  • Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43(Database issue):D789–798. doi:10.1093/nar/gku1205
  • Dong Q, Chen K, Xie J, Han H, Feng Y, Lu J, Wang W. Identification of key genes and pathways in discoid lupus skin via bioinformatics analysis. Medicine. 2021;100(16):e25433. doi:10.1097/MD.0000000000025433
  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–452. doi:10.1093/nar/gku1003
  • Koestler DC, Marsit CJ, Christensen BC, Karagas MR, Bueno R, Sugarbaker DJ, Kelsey KT, Houseman EA. Semi-supervised recursively partitioned mixture models for identifying cancer subtypes. Bioinformatics. 2010;26(20):2578–85. doi:10.1093/bioinformatics/btq470

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.