228
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Complexity of Tumor Microenvironment: Therapeutic Role of Curcumin and Its Metabolites

, , , , &
Pages 1-13 | Received 03 Jan 2022, Accepted 28 Jun 2022, Published online: 11 Jul 2022

References

  • Dagenais GR, Leong DP, Rangarajan S, Lanas F, Lopez-Jaramillo P, Gupta R, Diaz R, Avezum A, Oliveira GBF, Wielgosz A, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet. 2020;395(10226):785–94. doi:10.1016/S0140-6736(19)32007-0
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 2021;71(3):209–49.
  • Prasad S, Srivastava SK. Oxidative stress and cancer: chemopreventive and therapeutic role of triphala. Antioxidants. 2020;9(1):72. doi:10.3390/antiox9010072
  • Butler M, Prasad S, Srivastava SK. Targeting glioblastoma tumor microenvironment. Adv Exp Med Biol. 2020;1296:1–9.doi:10.1007/978-3-030-59038-3_1
  • Jahanban-Esfahlan R, Seidi K, Monhemi H, Adli ADF, Minofar B, Zare P, Farajzadeh D, Farajnia S, Behzadi R, Abbasi MM, et al. RGD delivery of truncated coagulase to tumor vasculature affords local thrombotic activity to induce infarction of tumors in mice. Sci Rep. 2017;7(1):1–14. doi:10.1038/s41598-017-05326-9
  • Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. Targeting tumor microenvironment for cancer therapy. Int J Mol Sci. 2019;20(4):840. doi:10.3390/ijms20040840
  • Prasad S, DuBourdieu D, Srivastava A, Kumar P, Lall R. Metal–curcumin complexes in therapeutics: an approach to enhance pharmacological effects of curcumin. Int J Mol Sci. 2021;22(13):7094. doi:10.3390/ijms22137094
  • Prasad S, Aggarwal BB. Turmeric, the golden spice: from traditional medicine to modern medicine. In: Benzie IFF, Wachtel-Galor S, editors. Herbal medicine: biomolecular and clinical aspects. Chapter 13. 2nd ed. Boca Raton, FL: CRC Press/Taylor & Francis; 2021.
  • Priyadarsini KI. The chemistry of curcumin: from extraction to therapeutic agent. Molecules. 2014;19(12):20091–112. doi:10.3390/molecules191220091
  • Gupta N, Verma K, Nalla S, Kulshreshtha A, Lall R, Prasad S. Free radicals as a double-edged sword: the cancer preventive and therapeutic roles of curcumin. Molecules. 2020;25(22):5390. doi:10.3390/molecules25225390
  • Saha P, Bose S, Srivastava AK, Chaudhary AA, Lall R, Prasad S. Jeopardy of COVID-19: rechecking the perks of phytotherapeutic interventions. Molecules. 2021;26(22):6783. doi:10.3390/molecules26226783
  • Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, Aggarwal BB. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325–48. doi:10.1111/bph.13621
  • Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2–18. doi:10.4143/crt.2014.46.1.2
  • Aggarwal BB, Deb L, Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules. 2014;20(1):185–205. doi:10.3390/molecules20010185
  • Jabczyk M, Nowak J, Hudzik B, Zubelewicz-Szkodzińska B. Curcumin and its potential impact on microbiota. Nutrients. 2021;13(6):2004. doi:10.3390/nu13062004
  • Ireson CR, Jones DJ, Orr S, Coughtrie MW, Boocock DJ, Williams ML, Farmer PB, Steward WP, Gescher AJ. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Prev Biomarkers. 2002;11(1):105–11.
  • Wu Q, Li B, Li Z, Li J, Sun S, Sun S. Cancer-associated adipocytes: key players in breast cancer progression. J Hematol Oncol. 2019;12(1):1–15. doi:10.1186/s13045-019-0778-6
  • Pallegar NK, Christian SL. Adipocytes in the tumour microenvironment. Adv Exp Med Biol. 2020;1234:1–13.
  • Moraes JA, Encarnação C, Franco VA, Xavier Botelho LG, Rodrigues GP, Ramos-Andrade I, Barja-Fidalgo C, Renovato-Martins M. Adipose tissue-derived extracellular vesicles and the tumor microenvironment: revisiting the hallmarks of cancer. Cancers. 2021;13(13):3328. doi:10.3390/cancers13133328
  • Zewdu A, Casadei L, Pollock RE, Braggio D. Adipose tumor microenvironment. Adv Exp Med Biol. 2020;1226:73-86. doi: 10.1007/978-3-030-36214-0_6.
  • Corrêa LH, Corrêa R, Farinasso CM, de Sant’Ana Dourado LP, Magalhães KG. Adipocytes and macrophages interplay in the orchestration of tumor microenvironment: new implications in cancer progression. Front Immunol. 2017;8:1129. doi:10.3389/fimmu.2017.01129
  • Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen C-L. Novel insights of dietary polyphenols and obesity. J Nutr Biochem. 2014;25(1):1–18. doi:10.1016/j.jnutbio.2013.09.001
  • Bradford PG. Curcumin and obesity. Biofactors. 2013;39(1):78–87. doi:10.1002/biof.1074
  • Sakuma S, Sumida M, Endoh Y, Kurita A, Yamaguchi A, Watanabe T, Kohda T, Tsukiyama Y, Fujimoto Y. Curcumin inhibits adipogenesis induced by benzyl butyl phthalate in 3T3-L1 cells. Toxicol Appl Pharmacol. 2017;329:158–64. doi:10.1016/j.taap.2017.05.036
  • Xie X-y, Kong P-R, Wu J-f, Li Y, Li Y-x. Curcumin attenuates lipolysis stimulated by tumor necrosis factor-α or isoproterenol in 3T3-L1 adipocytes. Phytomedicine. 2012;20(1):3–8. doi:10.1016/j.phymed.2012.09.003
  • Shao-Ling W, Ying L, Ying W, Yan-Feng C, Li-Xin N, Song-Tao L, Chang-Hao S. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway. Biomed Environ Sci. 2009;22(1):32–9. doi:10.1016/S0895-3988(09)60019-2
  • Kim J-H, Park S-H, Nam S-W, Kwon H-J, Kim B-W, Kim W-J, Choi YH. Curcumin stimulates proliferation, stemness acting signals and migration of 3T3-L1 preadipocytes. Int J Mol Med. 2011;28(3):429–35.
  • Lee YK, Lee WS, Hwang JT, Kwon DY, Surh YJ, Park OJ. Curcumin exerts antidifferentiation effect through AMPKα-PPAR-γ in 3T3-L1 adipocytes and antiproliferatory effect through AMPKα-COX-2 in cancer cells. J Agric Food Chem. 2009;57(1):305–10. doi:10.1021/jf802737z
  • Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K. Fibroblasts in the tumor microenvironment: shield or spear? Int J Mol Sci. 2018;19(5):1532. doi:10.3390/ijms19051532
  • Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Sig Transduct Target Ther. 2021;6(1):1–35. doi:10.1038/s41392-021-00641-0
  • Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, Zhang B, Meng Q, Yu X, Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):1–30. doi:10.1186/s12943-021-01428-1
  • Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11(1):1–19. doi:10.1038/s41467-020-18794-x
  • Taguchi A, Kawana K, Tomio K, Yamashita A, Isobe Y, Nagasaka K, Koga K, Inoue T, Nishida H, Kojima S, et al. Matrix metalloproteinase (MMP)-9 in cancer-associated fibroblasts (CAFs) is suppressed by omega-3 polyunsaturated fatty acids in vitro and in vivo. PLoS One. 2014;9(2):e89605. doi:10.1371/journal.pone.0089605
  • Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front Immunol. 2019;10) :1835. doi:10.3389/fimmu.2019.01835
  • Buhrmann C, Kraehe P, Lueders C, Shayan P, Goel A, Shakibaei M. Curcumin suppresses crosstalk between colon cancer stem cells and stromal fibroblasts in the tumor microenvironment: potential role of EMT. PLoS One. 2014;9(9):e107514. doi:10.1371/journal.pone.0107514
  • Yang J-y, Zhong X, Kim S-J, Kim D-H, Kim HS, Lee J-S, Yum H-W, Lee J, Na H-K, Surh Y-J. Comparative effects of curcumin and tetrahydrocurcumin on dextran sulfate sodium-induced colitis and inflammatory signaling in mice. J Cancer Prev. 2018;23(1):18–24. doi:10.15430/JCP.2018.23.1.18
  • Ba P, Xu M, Yu M, Li L, Duan X, Lv S, Fu G, Yang J, Yang P, Yang C, et al. Curcumin suppresses the proliferation and tumorigenicity of Cal27 by modulating cancer‐associated fibroblasts of TSCC. Oral Dis. 2020;26(7):1375–83. doi:10.1111/odi.13306
  • Dudás J, Fullár A, Romani A, Pritz C, Kovalszky I, Schartinger VH, Sprinzl GM, Riechelmann H. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma. Exp Cell Res. 2013;319(6):800–9. doi:10.1016/j.yexcr.2012.12.001
  • Du Y, Long Q, Zhang L, Shi Y, Liu X, Li X, Guan B, Tian Y, Wang X, Li L, et al. Curcumin inhibits cancer-associated fibroblast-driven prostate cancer invasion through MAOA/mTOR/HIF-1α signaling. Int J Oncol. 2015;47(6):2064–72. doi:10.3892/ijo.2015.3202
  • Zhang Y, Liu Y, Zou J, Yan L, Du W, Zhang Y, Sun H, Lu P, Geng S, Gu R, et al. Tetrahydrocurcumin induces mesenchymal-epithelial transition and suppresses angiogenesis by targeting HIF-1α and autophagy in human osteosarcoma. Oncotarget. 2017;8(53):91134–49. doi:10.18632/oncotarget.19845
  • Hendrayani S-F, Al-Khalaf HH, Aboussekhra A. Curcumin triggers p16-dependent senescence in active breast cancer-associated fibroblasts and suppresses their paracrine procarcinogenic effects. Neoplasia. 2013;15(6):631–IN11. doi:10.1593/neo.13478
  • Yodkeeree S, Garbisa S, Limtrakul P. Tetrahydrocurcumin inhibits HT1080 cell migration and invasion via downregulation of MMPs and uPA 1. Acta Pharmacol Sin. 2008;29(7):853–60. doi:10.1111/j.1745-7254.2008.00792.x
  • Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol. 2021;12:636568. doi:10.3389/fimmu.2021.636568
  • Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018;9:1869.
  • Xiao H, Guo Y, Li B, Li X, Wang Y, Han S, Cheng D, Shuai X. M2-like tumor-associated macrophage-targeted codelivery of STAT6 inhibitor and IKKβ siRNA induces M2-to-M1 repolarization for cancer immunotherapy with low immune side effects. ACS Cent Sci. 2020;6(7):1208–22. doi:10.1021/acscentsci.9b01235
  • Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 2014;6(3):1670–90. doi:10.3390/cancers6031670
  • Sionov RV, Fridlender ZG, Granot Z. The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron. 2015;8(3):125–58. doi:10.1007/s12307-014-0147-5
  • Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 2020;19(1)(1):23. doi:10.1186/s12943-020-01234-1
  • Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Sig Transduct Target Ther. 2021;6(1):1–25. doi:10.1038/s41392-021-00670-9
  • Man S, Yao J, Lv P, Liu Y, Yang L, Ma L. Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment. Food Funct. 2020;11(7):6422–32. doi:10.1039/c9fo01901d
  • Liao F, Liu L, Luo E, Hu J. Curcumin enhances anti-tumor immune response in tongue squamous cell carcinoma. Arch Oral Biol. 2018;92:32–7. doi:10.1016/j.archoralbio.2018.04.015
  • Kötting C, Hofmann L, Lotfi R, Engelhardt D, Laban S, Schuler PJ, Hoffmann TK, Brunner C, Theodoraki M-N. Immune-stimulatory effects of curcumin on the tumor microenvironment in head and neck squamous cell carcinoma. Cancers. 2021;13(6):1335. doi:10.3390/cancers13061335
  • Lee HH, Cho H. Improved anti-cancer effect of curcumin on breast cancer cells by increasing the activity of natural killer cells. J Microbiol Biotechnol. 2018;28(6):874–82. doi:10.4014/jmb.1801.01074
  • Chang Y-F, Chuang H-Y, Hsu C-H, Liu R-S, Gambhir SS, Hwang J-J. Immunomodulation of curcumin on adoptive therapy with T cell functional imaging in mice. Cancer Prev Res (Phila). 2012;5(3):444–52. doi:10.1158/1940-6207.CAPR-11-0308
  • Liu L, Lim MA, Jung S-N, Oh C, Won H-R, Jin YL, Piao Y, Kim HJ, Chang JW, Koo BS. The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer. Phytomedicine. 2021;92:153758. doi:10.1016/j.phymed.2021.153758
  • Lim S-O, Li C-W, Xia W, Cha J-H, Chan L-C, Wu Y, Chang S-S, Lin W-C, Hsu J-M, Hsu Y-H, et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30(6):925–39. doi:10.1016/j.ccell.2016.10.010
  • Lu Y, Miao L, Wang Y, Xu Z, Zhao Y, Shen Y, Xiang G, Huang L. Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Mol Therapy. 2016;24(2):364–74. doi:10.1038/mt.2015.165
  • MaruYama T, Kobayashi S, Shibata H, Chen W, Owada Y. Curcumin analog GO‐Y030 boosts the efficacy of anti‐PD‐1 cancer immunotherapy. Cancer Sci. 2021;112(12):4844–52. doi:10.1111/cas.15136
  • Shiri S, Alizadeh AM, Baradaran B, Farhanghi B, Shanehbandi D, Khodayari S, Khodayari H, Tavassoli A. Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment. Asian Pac J Cancer Prev. 2015;16(9):3917–22. doi:10.7314/APJCP.2015.16.9.3917
  • Zhang L-J, Huang R, Shen Y-W, Liu J, Wu Y, Jin J-M, Zhang H, Sun Y, Chen H-Z, Luan X. Enhanced anti-tumor efficacy by inhibiting HIF-1α to reprogram TAMs via core-satellite upconverting nanoparticles with curcumin mediated photodynamic therapy. Biomater Sci. 2021;9(19):6403–15. doi:10.1039/d1bm00675d
  • Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, Gong Z, Zhang S, Zhou J, Cao K, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761–73. doi:10.7150/jca.17648
  • Malandrino A, Mak M, Kamm RD, Moeendarbary E. Complex mechanics of the heterogeneous extracellular matrix in cancer. Extreme Mech Lett. 2018;21:25–34. doi:10.1016/j.eml.2018.02.003
  • Brassart-Pasco S, Brézillon S, Brassart B, Ramont L, Oudart J-B, Monboisse JC. Tumor microenvironment: extracellular matrix alterations influence tumor progression. Front Oncol. 2020;10:397. doi:10.3389/fonc.2020.00397
  • Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016;97:4–27. doi:10.1016/j.addr.2015.11.001
  • Shakibaei M, Kraehe P, Popper B, Shayan P, Goel A, Buhrmann C. Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer. BMC Cancer. 2015;15(1):1–15. doi:10.1186/s12885-015-1291-0
  • Lin S-S, Lai K-C, Hsu S-C, Yang J-S, Kuo C-L, Lin J-P, Ma Y-S, Wu C-C, Chung J-G. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and-9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett. 2009;285(2):127–33. doi:10.1016/j.canlet.2009.04.037
  • Hong J, Ahn K, Bae E, Jeon S, Choi H. The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis. 2006;9(2):147–52. doi:10.1038/sj.pcan.4500856
  • Zong H, Wang F, Fan Q-x, Wang L-x. Curcumin inhibits metastatic progression of breast cancer cell through suppression of urokinase-type plasminogen activator by NF-kappa B signaling pathways. Mol Biol Rep. 2012;39(4):4803–8. doi:10.1007/s11033-011-1273-5
  • Chatterjee A, Mitra A, Ray S, Chattopadhyay N, Siddiqi M. Curcumin exhibits antimetastatic properties by modulating integrin receptors, collagenase activity, and expression of Nm23 and E-cadherin. J Env Path Tox Oncol. 2003;22(1):47–56. doi:10.1615/JEnvPathToxOncol.v22.i1.50
  • Malik M, Mendoza M, Payson M, Catherino WH. Curcumin, a nutritional supplement with antineoplastic activity, enhances leiomyoma cell apoptosis and decreases fibronectin expression. Fertil Steril. 2009;91(5 Suppl):2177–84. doi:10.1016/j.fertnstert.2008.03.045
  • Li H, Wu H, Zhang H, Li Y, Li S, Hou Q, Wu S, Yang S-Y. Identification of curcumin-inhibited extracellular matrix receptors in non–small cell lung cancer A549 cells by RNA sequencing. Tumour Biol. 2017;39(6):1010428317705334. doi:10.1177/1010428317705334
  • Im Kim H, Huang H, Cheepala S, Huang S, Chung J. Curcumin inhibition of integrin (α6β4)-dependent breast cancer cell motility and invasion. Cancer Prev Res (Phila). 2008;1(5):385–91. doi:10.1158/1940-6207.CAPR-08-0087
  • Ohashi Y, Tsuchiya Y, Koizumi K, Sakurai H, Saiki I. Prevention of intrahepatic metastasis by curcumin in an orthotopic implantation model. Oncology. 2003;65(3):250–8. doi:10.1159/000074478
  • Qi C, Wang D, Gong X, Zhou Q, Yue X, Li C, Li Z, Tian G, Zhang B, Wang Q, et al. Co-delivery of curcumin and capsaicin by dual-targeting liposomes for inhibition of aHSC-induced drug resistance and metastasis. ACS Appl Mater Interfaces. 2021;13(14):16019–35. doi:10.1021/acsami.0c23137
  • Dudley AC. Tumor endothelial cells. Cold Spring Harb Perspect Med. 2012;2(3):a006536. doi:10.1101/cshperspect.a006536
  • Hida K, Maishi N, Annan DA, Hida Y. Contribution of tumor endothelial cells in cancer progression. Int J Mol Sci. 2018;19(5):1272. doi:10.3390/ijms19051272
  • Chouaib S, Kieda C, Benlalam H, Noman MZ, Mami-Chouaib F, Ruegg C. Endothelial cells as key determinants of the tumor microenvironment: interaction with tumor cells, extracellular matrix and immune killer cells. Crit Rev Immunol. 2010;30(6):529–45. doi:10.1615/CritRevImmunol.v30.i6.30
  • Sobierajska K, Ciszewski WM, Sacewicz-Hofman I, Niewiarowska J. Endothelial cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1234:71–86.
  • Jin G, Yang Y, Liu K, Zhao J, Chen X, Liu H, Bai R, Li X, Jiang Y, Zhang X, et al. Combination curcumin and (−)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway. Oncogenesis. 2017;6(10):e384. doi:10.1038/oncsis.2017.84
  • Vyas D, Gupt S, Dixit V, Anita K, Kaur S. To study the effect of curcumin on the growth properties of circulating endothelial progenitor cells. In Vitro Cell Dev Biol Anim. 2015;51(5):488–94. doi:10.1007/s11626-014-9852-0
  • Matsuo M, Sakurai H, Koizumi K, Saiki I. Curcumin inhibits the formation of capillary-like tubes by rat lymphatic endothelial cells. Cancer Lett. 2007;251(2):288–95. doi:10.1016/j.canlet.2006.11.027
  • Wang W, Sukamtoh E, Xiao H, Zhang G. Curcumin inhibits lymphangiogenesis in vitro and in vivo. Mol Nutr Food Res. 2015;59(12):2345–54. doi:10.1002/mnfr.201500399
  • Yoysungnoen B, Bhattarakosol P, Patumraj S, Changtam C. Effects of tetrahydrocurcumin on hypoxia-inducible factor-1. Biomed Res Int. 2015;2015:391748. doi:10.1155/2015/391748
  • Liu B, Cui L-s, Zhou B, Zhang L-l, h. Liu Z, Zhang L. Monocarbonyl curcumin analog A2 potently inhibits angiogenesis by inducing ROS-dependent endothelial cell death. Acta Pharmacol Sin. 2019;40(11):1412–23. doi:10.1038/s41401-019-0224-x
  • Palange AL, Mascolo DD, Carallo C, Gnasso A, Decuzzi P. Lipid–polymer nanoparticles encapsulating curcumin for modulating the vascular deposition of breast cancer cells. Nanomedicine. 2014;10(5):e991–e1002. doi:10.1016/j.nano.2014.02.004
  • Koo H-J, Shin S, Choi JY, Lee K-H, Kim B-T, Choe YS. Introduction of methyl groups at C2 and C6 positions enhances the antiangiogenesis activity of curcumin. Sci Rep. 2015;5(1):14205–12. doi:10.1038/srep14205

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.