317
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Association between Levels of Trimethylamine N-Oxide and Cancer: A Systematic Review and Meta-Analysis

, , , ORCID Icon &
Pages 402-414 | Received 13 Jun 2022, Accepted 21 Sep 2022, Published online: 10 Oct 2022

References

  • World Health Organization. Cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer.
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. doi:10.3322/caac.21660
  • Gatarek P, Kaluzna-Czaplinska J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021;20:301–19. doi:10.17179/excli2020-3239
  • Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y, Gregory J, Allayee H, Lee R, Graham M, Crooke R, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60. doi:10.1016/j.cmet.2012.12.011
  • Abbasalizad Farhangi M, Vajdi M. Gut microbiota-associated trimethylamine N-oxide and increased cardiometabolic risk in adults: a systematic review and dose-response meta-analysis. Nutr Rev. 2021;79(9):1022–42. doi:10.1093/nutrit/nuaa111
  • Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharmacol. 2018;175(8):1344–53. doi:10.1111/bph.13959
  • Farhangi MA, Vajdi M, Asghari-Jafarabadi M. Gut microbiota-associated metabolite trimethylamine N-Oxide and the risk of stroke: a systematic review and dose-response meta-analysis. Nutr J. 2020;19(1):76. doi:10.1186/s12937-020-00592-2
  • Zeng Y, Guo M, Fang X, Teng F, Tan X, Li X, Wang M, Long Y, Xu Y. Gut microbiota-derived trimethylamine N-oxide and kidney function: a systematic review and meta-analysis. Adv Nutr. 2021;12(4):1286–304. doi:10.1093/advances/nmab010
  • Zhuang R, Ge X, Han L, Yu P, Gong X, Meng Q, Zhang Y, Fan H, Zheng L, Liu Z, et al. Gut microbe-generated metabolite trimethylamine N-oxide and the risk of diabetes: a systematic review and dose-response meta-analysis. Obes Rev. 2019;20(6):883–94. doi:10.1111/obr.12843
  • Dehghan P, Farhangi MA, Nikniaz L, Nikniaz Z, Asghari-Jafarabadi M. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: an exploratory systematic review and dose-response meta- analysis. Obes Rev. 2020;21(5):e12993. doi:10.1111/obr.12993
  • Khodabakhshi A. Is there any possible association between trimethylamine N-oxide (TMAO) and cancer? A review study. J Occup Health Epidemiol. 2021;10(1):17–23. doi:10.52547/johe.10.1.17
  • Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer. 2007;121(11):2381–6. doi:10.1002/ijc.23192
  • Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL, Lusis AJ, Shih DM. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-κB. J Am Heart Assoc. 2016;5(2):e002767. doi:10.1161/JAHA.115.002767
  • Li T, Chen Y, Gua C, Li X. Elevated circulating trimethylamine N-oxide levels contribute to endothelial dysfunction in aged rats through vascular inflammation and oxidative stress. Front Physiol. 2017;8:350. doi:10.3389/fphys.2017.00350
  • Oellgaard J, Abitz Winther S, Schmidt Hansen T, Rossing P, Johan von Scholten B. Trimethylamine N-oxide (TMAO) as a new potential therapeutic target for insulin resistance and cancer. Curr Pharm Des. 2017;23(25):3699–712. doi:10.2174/1381612823666170622095324
  • Liu Z-Y, Tan X-Y, Li Q-J, Liao G-C, Fang A-P, Zhang D-M, Chen P-Y, Wang X-Y, Luo Y, Long J-A, et al. Trimethylamine N-oxide, a gut microbiota-dependent metabolite of choline, is positively associated with the risk of primary liver cancer: a case-control study. Nutr Metab (Lond). 2018;15(1):1–9. doi:10.1186/s12986-018-0319-2
  • Bae S, Ulrich CM, Neuhouser ML, Malysheva O, Bailey LB, Xiao L, Brown EC, Cushing-Haugen KL, Zheng Y, Cheng T-YD, et al. Plasma choline metabolites and colorectal cancer risk in the Women’s Health Initiative Observational Study. Cancer Res. 2014;74(24):7442–52. doi:10.1158/0008-5472.CAN-14-1835
  • Guertin KA, Li XS, Graubard BI, Albanes D, Weinstein SJ, Goedert JJ, Wang Z, Hazen SL, Sinha R. Serum trimethylamine N-oxide, carnitine, choline, and betaine in relation to colorectal cancer risk in the alpha tocopherol, beta carotene cancer prevention study. Cancer Epidemiol Prev Biomarkers. 2017;26(6):945–52. doi:10.1158/1055-9965.EPI-16-0948
  • Shariff MIF, Gomaa AI, Cox IJ, Patel M, Williams HRT, Crossey MME, Thillainayagam AV, Thomas HC, Waked I, Khan SA, et al. Urinary metabolic biomarkers of hepatocellular carcinoma in an Egyptian population: a validation study. J Proteome Res. 2011;10(4):1828–36. doi:10.1021/pr101096f
  • Sánchez-Alcoholado L, Ordóñez R, Otero A, Plaza-Andrade I, Laborda-Illanes A, Medina JA, Ramos-Molina B, Gómez-Millán J, Queipo-Ortuño MI. Gut microbiota-mediated inflammation and gut permeability in patients with obesity and colorectal cancer. Int J Mol Sci. 2020;21(18):6782. doi:10.3390/ijms21186782
  • Huang JY, Luu HN, Butler LM, Midttun Ø, Ulvik A, Wang R, Jin A, Gao Y-T, Tan Y, Ueland PM, et al. A prospective evaluation of serum methionine‐related metabolites in relation to pancreatic cancer risk in two prospective cohort studies. Int J Cancer. 2020;147(7):1917–27. doi:10.1002/ijc.32994
  • Ishikawa S, Sugimoto M, Edamatsu K, Sugano A, Kitabatake K, Iino M. Discrimination of oral squamous cell carcinoma from oral lichen planus by salivary metabolomics. Oral Dis. 2020;26(1):35–42. doi:10.1111/odi.13209
  • Yang F, Li Q, Xiang J, Zhang H, Sun H, Ruan G, Tang Y. NMR-based plasma metabolomics of adult B-cell acute lymphoblastic leukemia. Mol Omics. 2021;17(1):153–9. doi:10.1039/d0mo00067a
  • Giskeødegård GF, Andreassen T, Bertilsson H, Tessem M-B, Bathen TF. The effect of sampling procedures and day-to-day variations in metabolomics studies of biofluids. Anal Chim Acta. 2019;1081:93–102. doi:10.1016/j.aca.2019.07.026
  • Mondul AM, Moore SC, Weinstein SJ, Karoly ED, Sampson JN, Albanes D. Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha‐tocopherol, beta‐carotene cancer prevention (ATBC) study. Int J Cancer. 2015;137(9):2124–32. doi:10.1002/ijc.29576
  • Liu X, Liu H, Yuan C, Zhang Y, Wang W, Hu S, Liu L, Wang Y. Preoperative serum TMAO level is a new prognostic marker for colorectal cancer. Biomarkers Med. 2017;11(5):443–7. doi:10.2217/bmm-2016-0262
  • Wang X, Zhao X, Chou J, Yu J, Yang T, Liu L, Zhang F. Taurine, glutamic acid and ethylmalonic acid as important metabolites for detecting human breast cancer based on the targeted metabolomics. Cancer Biomark. 2018;23(2):255–68. doi:10.3233/CBM-181500
  • Zhou X-M, He C-C, Liu Y-M, Zhao Y, Zhao D, Du Y, Zheng W-Y, Li J-X. Metabonomic classification and detection of small molecule biomarkers of malignant pleural effusions. Anal Bioanal Chem. 2012;404(10):3123–33. doi:10.1007/s00216-012-6432-6
  • Cox IJ, Aliev AE, Crossey MM, Dawood M, Al-Mahtab M, Akbar SM, Rahman S, Riva A, Williams R, Taylor-Robinson, S, D. Urinary nuclear magnetic resonance spectroscopy of a Bangladeshi cohort with hepatitis-B hepatocellular carcinoma: a biomarker corroboration study. World J Gastroenterol. 2016;22(16):4191. doi:10.3748/wjg.v22.i16.4191
  • Ishikawa S, Sugimoto M, Kitabatake K, Tu M, Sugano A, Yamamori I, Iba A, Yusa K, Kaneko M, Ota S, et al. Effect of timing of collection of salivary metabolomic biomarkers on oral cancer detection. Amino Acids. 2017;49(4):761–70. doi:10.1007/s00726-017-2378-5
  • Silva CL, Olival A, Perestrelo R, Silva P, Tomás H, Câmara JS. Untargeted urinary 1H NMR-based metabolomic pattern as a potential platform in breast cancer detection. Metabolites. 2019;9(11):269. doi:10.3390/metabo9110269
  • Wang H, Luo Q, Feng X, Zhang R, Li J, Chen F. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer. 2018;18(1):1–10. doi:10.1186/s12885-018-4403-9
  • Xu K-Y, Xia G-H, Lu J-Q, Chen M-X, Zhen X, Wang S, You C, Nie J, Zhou H-W, Yin J. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci Rep. 2017;7(1):1–12. doi:10.1038/s41598-017-01387-y
  • Chang Y-C, Chu Y-H, Wang C-C, Wang C-H, Tain Y-L, Yang H-W. Rapid detection of gut microbial metabolite trimethylamine N-oxide for chronic kidney disease prevention. Biosensors. 2021;11(9):339. doi:10.3390/bios11090339
  • Crowe W, Pan X, Mackle J, Harris A, Hardiman G, Elliott CT, Green BD. Eight week dietary inclusion of nitrite-containing frankfurter exacerbates colorectal cancer pathology, increases oxidative stress, alters metabolism and causes gut dybiosis in APCmin mice. bioRxiv. 2022.
  • Griffin LE, Djuric Z, Angiletta CJ, Mitchell CM, Baugh ME, Davy KP, Neilson AP. A Mediterranean diet does not alter plasma trimethylamine N-oxide concentrations in healthy adults at risk for colon cancer. Food Funct. 2019;10(4):2138–47. doi:10.1039/c9fo00333a
  • Xu R, Wang Q, Li L. A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genomics. 2015;16(S7):1–9. doi:10.1186/1471-2164-16-S7-S4
  • Jalandra R, Dalal N, Yadav AK, Verma D, Sharma M, Singh R, Khosla A, Kumar A, Solanki PR. Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer. Appl Microbiol Biotechnol. 2021;105(20):7651–60. doi:10.1007/s00253-021-11582-7
  • Richman EL, Kenfield SA, Stampfer MJ, Giovannucci EL, Zeisel SH, Willett W, C, Chan JM. Choline intake and risk of lethal prostate cancer: incidence and survival. Am J Clin Nutr. 2012;96(4):855–63. doi:10.3945/ajcn.112.039784
  • Bag S, Banerjee DR, Basak A, Das AK, Pal M, Banerjee R, Paul RR, Chatterjee J. NMR (1H and 13C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect. Biochem Biophys Res Commun. 2015;459(4):574–8. doi:10.1016/j.bbrc.2015.02.149
  • Chan CWH, Law BMH, Waye MMY, Chan JYW, So WKW, Chow KM. Trimethylamine-N-oxide as one hypothetical link for the relationship between intestinal microbiota and cancer-where we are and where shall we go? J Cancer. 2019;10(23):5874–82. doi:10.7150/jca.31737
  • Yu X-F, Zou J, Dong J. Fish consumption and risk of gastrointestinal cancers: a meta-analysis of cohort studies. World J Gastroenterol. 2014;20(41):15398. doi:10.3748/wjg.v20.i41.15398
  • Cho CE, Taesuwan S, Malysheva OV, Bender E, Tulchinsky NF, Yan J, Sutter JL, Caudill MA. Trimethylamine‐N‐oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: a randomized controlled trial. Mol Nutr Food Res. 2017;61(1):1600324. doi:10.1002/mnfr.201600324
  • Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, Slimani N, Zamora-Ros R, Rundle M, Frost G, et al. A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr. 2017;105(3):600–8. doi:10.3945/ajcn.116.146639
  • Lee JY, Sim T-B, Lee J-e, Na H-K. Chemopreventive and chemotherapeutic effects of fish oil derived omega-3 polyunsaturated fatty acids on colon carcinogenesis. Clin Nutr Res. 2017;6(3):147–60. doi:10.7762/cnr.2017.6.3.147
  • Krishnan S, O’Connor LE, Wang Y, Gertz ER, Campbell WW, Bennett BJ. Adopting a Mediterranean-style eating pattern with low, but not moderate, unprocessed, lean red meat intake reduces fasting serum trimethylamine N-oxide (TMAO) in adults who are overweight or obese. Br J Nutr. 2021:1–9. Epub ahead of print. doi:10.1017/S0007114521004694
  • Korniluk A, Koper O, Kemona H, Dymicka-Piekarska V. From inflammation to cancer. Ir J Med Sci. 2017;186(1):57–62. doi:10.1007/s11845-016-1464-0
  • Janakiram NB, Rao CV. The role of inflammation in colon cancer. Adv Exp Med Biol. 2014.;816:25–52.
  • Wu D, Cao M, Peng J, Li N, Yi S, Song L, Wang X, Zhang M, Zhao J. The effect of trimethylamine N-oxide on Helicobacter pylori-induced changes of immunoinflammatory genes expression in gastric epithelial cells. Int Immunopharmacol. 2017;43:172–8. doi:10.1016/j.intimp.2016.11.032
  • Chen M, Zhu X, Ran L, Lang H, Yi L, Mi M. Trimethylamine‐N‐oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3‐SOD2‐mtROS signaling pathway. J Am Heart Assoc. 2017;6(9):e006347. doi:10.1161/JAHA.117.006347
  • Yue C, Yang X, Li J, Chen X, Zhao X, Chen Y, Wen Y. Trimethylamine N-oxide prime NLRP3 inflammasome via inhibiting ATG16L1-induced autophagy in colonic epithelial cells. Biochem Biophys Res Commun. 2017;490(2):541–51. doi:10.1016/j.bbrc.2017.06.075
  • Huang C-F, Chen L, Li Y-C, Wu L, Yu G-T, Zhang W-F, Sun Z-J. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2017;36(1):1–13. doi:10.1186/s13046-017-0589-y
  • He Q, Fu Y, Tian D, Yan W. The contrasting roles of inflammasomes in cancer. Am J Cancer Res. 2018;8(4):566–83.
  • Wang H, Rong X, Zhao G, Zhou Y, Xiao Y, Ma D, Jin X, Wu Y, Yan Y, Yang H, et al. The microbial metabolite trimethylamine N-oxide promotes antitumor immunity in triple-negative breast cancer. Cell Metab. 2022;34(4):581–94.e8. e588, doi:10.1016/j.cmet.2022.02.010.
  • Annunziata G, Maisto M, Schisano C, Ciampaglia R, Narciso V, Tenore GC, Novellino E. Effects of grape pomace polyphenolic extract (Taurisolo®) in reducing TMAO serum levels in humans: preliminary results from a randomized, placebo-controlled, crossover study. Nutrients. 2019;11(1):139. doi:10.3390/nu11010139
  • Annunziata G, Maisto M, Schisano C, Ciampaglia R, Narciso V, Hassan ST, Tenore GC, Novellino E. Effect of grape pomace polyphenols with or without pectin on TMAO serum levels assessed by LC/MS-based assay: a preliminary clinical study on overweight/obese subjects. Front Pharmacol. 2019;10:575. doi:10.3389/fphar.2019.00575
  • Collins HL, Drazul-Schrader D, Sulpizio AC, Koster PD, Williamson Y, Adelman SJ, Owen K, Sanli T, Bellamine A. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP. Atherosclerosis. 2016;244:29–37. doi:10.1016/j.atherosclerosis.2015.10.108
  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–16. doi:10.1016/j.freeradbiomed.2010.09.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.