176
Views
0
CrossRef citations to date
0
Altmetric
Articles

Caffeine-Supplemented Diet Prevents Fatigue-Like Behavior in Tumor-Bearing Mice

, , , , & ORCID Icon
Pages 1005-1013 | Received 13 Sep 2022, Accepted 23 Dec 2022, Published online: 30 Jan 2023

References

  • Feng LR, Barb JJ, Regan J, Saligan LN. Plasma metabolomic profile associated with fatigue in cancer patients. Cancer Med. 2021;10(5):1623–33. doi: 10.1002/cam4.3749.
  • Bower JE. Cancer-related fatigue–mechanisms, risk factors, and treatments. Nat Rev Clin Oncol. 2014;11(10):597–609. doi: 10.1038/nrclinonc.2014.127
  • Thong MSY, van Noorden CJF, Steindorf K, Arndt V. Cancer-related fatigue: causes and current treatment options. Curr Treat Options Oncol. 2020;21:1–19. doi: 10.1007/s11864-020-0707-5.
  • O'Higgins CM, Brady B, O'Connor B, Walsh D, Reilly RB. The pathophysiology of cancer-related fatigue: current controversies. Support Care Cancer. 2018;26(10):3353–64. doi: 10.1007/s00520-018-4318-7.
  • Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer. 2022;22(8):452–66. doi: 10.1038/s41568-022-00485-y.
  • Tajan M, Vousden KH. Dietary approaches to cancer therapy. Cancer Cell. 2020;37(6):767–85. doi: 10.1016/j.ccell.2020.04.005.
  • Davis JM, Zhao Z, Stock HS, Mehl KA, Buggy J, Hand GA. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol - Regul Integr Comp Physiol. 2003;284:399–404. doi: 10.1152/ajpregu.00386.2002.
  • Rathmacher JA, Fuller JC, Baier SM, Abumrad NN, Angus HF, Sharp RL. Adenosine-5’-triphosphate (ATP) supplementation improves low peak muscle torque and torque fatigue during repeated high intensity exercise sets. J Int Soc Sports Nutr. 2012;9(1):48. doi: 10.1186/1550-2783-9-48.
  • Doepker C, Lieberman HR, Smith AP, Peck JD, El-Sohemy A, Welsh BT. Caffeine: friend or foe? Annu Rev Food Sci Technol. 2016;7:117–37. doi: 10.1146/annurev-food-041715-033243.
  • McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312. doi: 10.1016/j.neubiorev.2016.09.001. Cited: in:: PMID: 27612937.
  • Gurley BJ, Steelman SC, Thomas SL. Multi-ingredient, caffeine-containing dietary supplements: history, safety, and efficacy. Clin Ther. 2015;37(2):275–301. doi: 10.1016/j.clinthera.2014.08.012.
  • de Mejia EG, Ramirez-Mares MV. Impact of caffeine and coffee on our health. Trends Endocrinol Metab. 2014;25(10):489–92. doi: 10.1016/j.tem.2014.07.003.
  • Pickering C, Grgic J. Caffeine and exercise: what next? Sports Med. 2019;49(7):1007–30. doi: 10.1007/s40279-019-01101-0.
  • Yoshizawa K, Kurono R, Sato H, Ishijima E, Nasu H, Ferdaos N, Suzuki H, Negishi K. Effect of sucrose on cisplatin-induced fatigue-like behavior in mice: comparison with fructose and glucose. Cancer Diagn Progn. 2021;1(2):95–102. doi: 10.21873/cdp.10014.
  • Murphy KT, Chee A, Trieu J, Naim T, Lynch GS. Importance of functional and metabolic impairments in the characterization of the C-26 murine model of cancer cachexia. Dis Model Mech. 2012;5(4):533–45. doi: 10.1242/dmm.008839.
  • Aulino P, Berardi E, Cardillo VM, Rizzuto E, Perniconi B, Ramina C, Padula F, Spugnini EP, Baldi A, Faiola F, et al. Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC Cancer. 2010;10(1):363. doi: 10.1186/1471-2407-10-363.
  • Fearon KCH, Glass DJ, Guttridge DC. Cancer cachexia: mediators, signaling, and metabolic pathways. Cell Metab. 2012;16(2):153–66. doi: 10.1016/j.cmet.2012.06.011.
  • Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47. doi: 10.1016/j.cmet.2015.12.006. Cited: in:: PMID: 26771115.
  • Liberti MV, Locasale JW. The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci. 2016;41(3):211–8. doi: 10.1016/j.tibs.2015.12.001.
  • Heiden MGV, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33. doi: 10.1126/science.1160809.
  • Pakiet A, Kobiela J, Stepnowski P, Sledzinski T, Mika A. Changes in lipids composition and metabolism in colorectal cancer: a review. Lipids Health Dis. 2019;18(1):29. doi: 10.1186/s12944-019-0977-8.
  • Liu Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 2006;9(3):230–4. doi: 10.1038/sj.pcan.4500879.
  • Snaebjornsson MT, Janaki-Raman S, Schulze A. Greasing the wheels of the cancer machine: the role of lipid metabolism in cancer. Cell Metab. 2020;31(1):62–76. doi: 10.1016/j.cmet.2019.11.010.
  • Röhrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16(11):732–49. doi: 10.1038/nrc.2016.89.
  • Grossberg AJ, Vichaya EG, Gross PS, Ford BG, Scott KA, Estrada D, Vermeer DW, Vermeer P, Dantzer R. Interleukin 6-independent metabolic reprogramming as a driver of cancer-related fatigue. Brain Behav Immun. 2020;88:230–41. doi: 10.1016/j.bbi.2020.05.043.
  • Benowitz NL. Clinical pharmacology of caffeine. Annu Rev Med. 1990;41:277–88. doi: 10.1146/annurev.me.41.020190.001425.
  • Barcelos RP, Lima FD, Carvalho NR, Bresciani G, Royes LF. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr Res. 2020;80:1–17. doi: 10.1016/j.nutres.2020.05.005.
  • Kim J, Park J, Lim K. Nutrition supplements to stimulate lipolysis: a review in relation to endurance exercise capacity. J Nutr Sci Vitaminol (Tokyo). 2016;62(3):141–61. doi: 10.3177/jnsv.62.141.
  • Rohm M, Zeigerer A, Machado J, Herzig S. Energy metabolism in cachexia. EMBO Rep. 2019;20(4):1–13. doi: 10.15252/embr.201847258.
  • Kawano Y, Nagata M, Kohno T, Ichimiya A, Iwakiri T, Okumura M, Arimori K. Caffeine increases the antitumor effect of cisplatin in human hepatocellular carcinoma cells. Biol Pharm Bull. 2012;35(3):400–7. doi: 10.1248/bpb.35.400.
  • Wang Z, Gu C, Wang X, Lang Y, Wu Y, Wu X, Zhu X, Wang K, Yang H. Caffeine enhances the anti-tumor effect of 5-fluorouracil via increasing the production of reactive oxygen species in hepatocellular carcinoma. Med Oncol. 2019;36(12):1–9. doi: 10.1007/s12032-019-1323-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.