110
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Anti-Leukemic Attributes of Natural Compounds Targeting Autophagy: A Closer Look into the Molecular Mechanisms

, &
Pages 236-251 | Received 19 Oct 2023, Accepted 10 Jan 2024, Published online: 23 Jan 2024

References

  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007;117(2):326–336. doi: 10.1172/JCI28833.
  • Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–131. 10.1016/j.ceb.11.014.
  • Yu L, Chen Y, Tooze SA. Autophagy pathway: cellular and molecular mechanisms. Autophagy. 2018;14(2):207–215. doi: 10.1080/15548627.1378838.
  • Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol. 2008;28(18):5747–5763. doi: 10.1128/MCB.02070-07.
  • Wirawan E, Berghe TV, Lippens S, Agostinis P, Vandenabeele P. Autophagy: for better or for worse. Cell Res. 2012;22(1):43–61. doi: 10.1038/cr.2011.152.
  • Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014;20(3):460–473. 10.1089/ars.2013.5371.
  • Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–2405. doi: 10.1182/blood-2016-06-721662. 10.1182/blood-2016-03-643544
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660.
  • Watts J, Nimer S. Recent advances in the understanding and treatment of acute myeloid leukemia. F1000Res. 2018;7:1196. doi: 10.12688/f1000research.14116.1.
  • Salminen A, Kaarniranta K, Kauppinen A. Beclin 1 interactome controls the crosstalk between apoptosis, autophagy and inflammasome activation: impact on the aging process. Ageing Res Rev. 2013;12(2):520–534. doi: 10.1016/j.arr.2012.11.004.
  • Yun CW, Lee SH. The roles of autophagy in cancer. Int J Mol Sci. 2018;19(11):3466. doi: 10.3390/ijms19113466.
  • Mathew R, Khor S, Hackett SR, Rabinowitz JD, Perlman DH, White E. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol Cell. doi: 2014;55(6):916–930. 10.1016/j.molcel.2014.07.019.
  • Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 2009;11(12):1433–1437. doi: 10.1038/ncb1991.
  • Ylä-Anttila P, Vihinen H, Jokitalo E, Eskelinen E-L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy. 2009;5(8):1180–1185. doi: 10.4161/auto.5.8.10274.
  • Alers S, Löffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32(1):2–11. doi: 10.1128/MCB.06159-11.
  • Pópulo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci. 2012;13(2):1886–1918. doi: 10.3390/ijms13021886.
  • Kim YC, Guan K-L. mTOR: a pharmacologic target for autophagy regulation. J Clin Invest. 2015;125(1):25–32. doi: 10.1172/JCI73939.
  • Kim J, Kundu M, Viollet B, Guan K-L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–141. doi: 10.1038/ncb2152.
  • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, Griffiths G, Ktistakis NT. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182(4):685–701. doi: 10.1083/jcb.200803137.
  • Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. ULK1·ATG13·FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284(18):12297–12305. doi: 10.1074/jbc.M900573200.
  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981–1991. doi: 10.1091/mbc.e08-12-1248.
  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999;402(6762):672–676. doi: 10.1038/45257.
  • Itakura E, Mizushima N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy. 2010;6(6):764–776. doi: 10.4161/auto.6.6.12709.
  • Furuya N, Yu J, Byfield M, Pattingre S, Levine B. The evolutionarily conserved domain of beclin 1 is required for Vps34 binding, autophagy, and tumor suppressor function. Autophagy. 2005;1(1):46–52. doi: 10.4161/auto.1.1.1542.
  • Suzuki K, Akioka M, Kondo-Kakuta C, Yamamoto H, Ohsumi Y. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J Cell Sci. 2013;126(Pt 11):2534–2544. doi: 10.1242/jcs.122960.
  • Wijdeven RH, Janssen H, Nahidiazar L, Janssen L, Jalink K, Berlin I, Neefjes J. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat Commun. 2016;7(1):11808. doi: 10.1038/ncomms11808.
  • Guo JY, Xia B, White E. Autophagy-mediated tumor promotion. Cell. 2013;155(6):1216–1219. doi: 10.1016/j.cell.2013.11.019.
  • Barnard RA, Regan DP, Hansen RJ, Maycotte P, Thorburn A, Gustafson DL. Autophagy inhibition delays early but not late-stage metastatic disease. J Pharmacol Exp Ther. 2016;358(2):282–293. doi: 10.1124/jpet.116.233908.
  • White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer. 2012;12(6):401–410. doi: 10.1038/nrc3262.
  • Baquero P, Dawson A, Mukhopadhyay A, Kuntz EM, Mitchell R, Olivares O, Ianniciello A, Scott MT, Dunn K, Nicastri MC, et al. Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia. 2019;33(4):981–994. doi: 10.1038/s41375-018-0252-4.
  • Watson A, Riffelmacher T, Stranks A, Williams O, De Boer J, Cain K, MacFarlane M, McGouran J, Kessler B, Khandwala S, et al. Autophagy limits proliferation and glycolytic metabolism in acute myeloid leukemia. Cell Death Discov. 2015;1(1):15008. doi: 10.1038/cddiscovery.2015.8.
  • Yamamoto H, Zhang S, Mizushima N. Autophagy genes in biology and disease. Nat Rev Genet. 2023;24(6):382–400. doi: 10.1038/s41576-022-00562-w.
  • Nurjanah N, Saepudin E. Curcumin isolation, synthesis and characterization of curcumin isoxazole derivative compound. Depok, Indonesia, 2019. p. 020065. doi: 10.1063/1.5132492
  • 1.PubChem CID 96951. https://pubchem.ncbi.nlm.nih.gov/compound/969516#section=2D-Structure.
  • Surh Y-J. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3(10):768–780. doi: 10.1038/nrc1189.
  • Zhou H, Beevers CS, Huang S. The targets of curcumin. Curr Drug Targets. 2011;12(3):332–347. doi: 10.2174/138945011794815356
  • Elgizawy HA, Ali AA, Hussein MA. Resveratrol: isolation, and its nanostructured lipid carriers, inhibits cell proliferation, induces cell apoptosis in certain human cell lines carcinoma and exerts protective effect against paraquat-induced hepatotoxicity. J Med Food. 2021;24(1):89–100. doi: 10.1089/jmf.2019.0286.
  • PubChem CID 445154. https://pubchem.ncbi.nlm.nih.gov/compound/445154#section=2D-Structure.
  • Kulkarni SS, Cantó C. The molecular targets of resveratrol. Biochim Biophys Acta. 2015;1852(6):1114–1123. doi: 10.1016/j.bbadis.2014.10.005.
  • Lee A-R, Wu W-L, Chang W-L, Lin H-C, King M-L. Isolation and bioactivity of new tanshinones. J Nat Prod. 1987;50(2):157–160. doi: 10.1021/np50050a004.
  • PubChem CID 164676. https://pubchem.ncbi.nlm.nih.gov/compound/164676#section=2D-Structure.
  • Fang Z, Zhang M, Liu J, Zhao X, Zhang Y, Fang L. Tanshinone IIA: a review of its anticancer effects. Front Pharmacol. 2020;11:611087. doi: 10.3389/fphar.2020.611087.
  • Liu H, Liu C, Wang M, Sun D, Zhu P, Zhang P, Tan X, Shi G. Tanshinone IIA affects the malignant growth of cholangiocarcinoma cells by inhibiting the PI3K-Akt-mTOR pathway. Sci Rep. 2021;11(1):19268. doi: 10.1038/s41598-021-98948-z.
  • Das S, Das MK, Das R, Gehlot V, Mahant S, Mazumder PM, Das S, Falls N, Kumar V. Isolation, characterization of berberine from Berberis aristata DC for eradication of resistant Helicobacter pylori. Biocatal Agric Biotechnol. 2020;26:101622. doi: 10.1016/j.bcab.2020.101622.
  • PubChem CID 2353. https://pubchem.ncbi.nlm.nih.gov/compound/2353#section=2D-Structure.
  • Guo P, Cai C, Wu X, Fan X, Huang W, Zhou J, Wu Q, Huang Y, Zhao W, Zhang F, et al. An insight into the molecular mechanism of berberine towards multiple cancer types through systems pharmacology. Front Pharmacol. 2019;10:857. doi: 10.3389/fphar.2019.00857.
  • Huang XY, Wang Y, De Lu Z. Isolation and preparation of 3H-tetrandrine. Labelled Comp Radiopharmac. 1994;34(10):899–903. doi: 10.1002/jlcr.2580341002.
  • PubChem CID 73078. https://pubchem.ncbi.nlm.nih.gov/compound/73078#section=2D-Structure.
  • Luan F, He X, Zeng N. Tetrandrine: a review of its anticancer potentials, clinical settings, pharmacokinetics and drug delivery systems. J Pharm Pharmacol. 2020;72(11):1491–1512. doi: 10.1111/jphp.13339.
  • Čretnik L, Škerget M, Knez Ž. Separation of parthenolide from feverfew: performance of conventional and high-pressure extraction techniques. Sep Purif Technol. 2005;41(1):13–20. doi: 10.1016/j.seppur.2004.03.011.
  • PubChem CID 7251185. https://pubchem.ncbi.nlm.nih.gov/compound/7251185#section=2D-Structure.
  • Freund RRA, Gobrecht P, Fischer D, Arndt H-D. Advances in chemistry and bioactivity of parthenolide. Nat Prod Rep. 2020;37(4):541–565. doi: 10.1039/C9NP00049F.
  • Sanghavi N, Srivastava R, Malode Y. Isolation and identification of the flavonoid “quercetin” from tridax procumbens linn. Int J Pharm Sci Res. 2014;5:1454–1459. doi: 10.13040/IJPSR.0975-8232.5(4).1454-59.
  • PubChem CID 5280343. https://pubchem.ncbi.nlm.nih.gov/compound/5280343#section=2D-Structure.
  • Vafadar A, Shabaninejad Z, Movahedpour A, Fallahi F, Taghavipour M, Ghasemi Y, Akbari M, Shafiee A, Hajighadimi S, Moradizarmehri S, et al. Quercetin and cancer: new insights into its therapeutic effects on ovarian cancer cells. Cell Biosci. 2020;10(1):32. doi: 10.1186/s13578-020-00397-0.
  • Khalid SA, Tahir AE, Satti GM, Friedrichsen GM, Christensen SB. Isolation and characterization of pristimerin as the antiplasmodial and antileishmanial agent of Maytenus senegalensis (Lam.) Exell. Arkivoc. 2007;2007(9):129–134. doi: 10.3998/ark.5550190.0008.915.
  • PubChem CID 159516. https://pubchem.ncbi.nlm.nih.gov/compound/159516#section=2D-Structure.
  • Chen R-Z, Yang F, Zhang M, Sun Z-G, Zhang N. Cellular and molecular mechanisms of pristimerin in cancer therapy: recent advances. Front Oncol. 2021;11:671548. doi: 10.3389/fonc.2021.671548.
  • Trendafilova A, Chanev C, Todorova M. Ultrasound-assisted extraction of alantolactone and isoalantolactone from Inula helenium roots. Pharmacogn Mag. 2010;6(23):234–237. doi: 10.4103/0973-1296.66942.
  • PubChem CID 72724. https://pubchem.ncbi.nlm.nih.gov/compound/72724#section=2D-Structure.
  • Babaei G, Gholizadeh-Ghaleh Aziz S, Rajabi Bazl M, Khadem Ansari MH. A comprehensive review of anticancer mechanisms of action of alantolactone. Biomed Pharmacother. 2021;136:111231. doi: 10.1016/j.biopha.2021.111231.
  • Sadria M, Seo D, Layton AT. The mixed blessing of AMPK signaling in cancer treatments. BMC Cancer. 2022;22(1):105. 10.1186/s12885-022-09211-1.
  • Looi W, Zargari A, Dun K, Grigoriadis G, Fedele P, Gregory GP, Low MSY. Concomitant diagnosis of chronic myeloid leukemia and myeloma. Pathology. 2022;54(4):493–495. doi: 10.1016/j.pathol.2021.08.007.
  • Yun S, Vincelette ND, Segar JM, Dong Y, Shen Y, Kim D-W, Abraham I. Comparative effectiveness of newer tyrosine kinase inhibitors versus imatinib in the first-line treatment of chronic-phase chronic myeloid leukemia across risk groups: a systematic review and meta-analysis of eight randomized trials. Clin Lymphoma Myeloma Leuk. 2016;16(6):e85–e94. doi: 10.1016/j.clml.2016.03.003.
  • Paramasivam M, Poi R, Banerjee H, Bandyopadhyay A. High-performance thin layer chromatographic method for quantitative determination of curcuminoids in Curcuma longa germplasm. Food Chem. 2009;113(2):640–644. doi: 10.1016/j.foodchem.2008.07.051.
  • Jia Y-L, Li J, Qin Z-H, Liang Z-Q. Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells. J Asian Nat Prod Res. 2009;11(11):918–928. doi: 10.1080/10286020903264077.
  • Rainey N, Motte L, Aggarwal BB, Petit PX. Curcumin hormesis mediates a cross-talk between autophagy and cell death. Cell Death Dis. 2015;6(12):e2003. doi: 10.1038/cddis.2015.343.
  • Puissant A, Robert G, Fenouille N, Luciano F, Cassuto J-P, Raynaud S, Auberger P. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res. 2010;70(3):1042–1052. doi: 10.1158/0008-5472.CAN-09-3537.
  • Li J, Guo Q, Lei X, Zhang L, Su C, Liu Y, Zhou W, Chen H, Wang H, Wang F, et al. Pristimerin induces apoptosis and inhibits proliferation, migration in H1299 lung cancer cells. J Cancer. 2020;11(21):6348–6355. doi: 10.7150/jca.44431.
  • Liu Y, Ren Z, Li X, Zhong J, Bi Y, Li R, Zhao Q, Yu X. Pristimerin induces autophagy-mediated cell death in K562 cells through the ROS/JNK signaling pathway. Chem Biodivers. 2019;16(8):e1900325. doi: 10.1002/cbdv.201900325.
  • Lu Z, Jin Y, Chen C, Li J, Cao Q, Pan J. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-κB signaling and depleting Bcr-Abl. Mol Cancer. 2010;9(1):112. doi: 10.1186/1476-4598-9-112.
  • Ming Q, Han T, Li W, Zhang Q, Zhang H, Zheng C, Huang F, Rahman K, Qin L. Tanshinone IIA and tanshinone I production by Trichoderma atroviride D16, an endophytic fungus in Salvia miltiorrhiza. Phytomedicine. 2012;19(3–4):330–333. doi: 10.1016/j.phymed.2011.09.076.
  • Yun S-M, Jung JH, Jeong S-J, Sohn EJ, Kim B, Kim S-H. Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells: tanshinone IIA induces autophagic cell death in KBM-5 cells. Phytother Res. 2014;28(3):458–464. doi: 10.1002/ptr.5015.
  • Van Vlierberghe P, Van Grotel M, Beverloo HB, Lee C, Helgason T, Buijs-Gladdines J, Passier M, Van Wering ER, Veerman AJP, Kamps WA, et al. The cryptic chromosomal deletion, del(11)(p12p13), as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood. 2006;108(11):220. doi: 10.1182/blood.V108.11.220.220.
  • Zelent A, Greaves M, Enver T. Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukemia. Oncogene. 2004;23(24):4275–4283. doi: 10.1038/sj.onc.1207672.
  • Shi C, Lan W, Wang Z, Yang D, Wei J, Liu Z, Teng Y, Gu M, Yuan T, Cao F, et al. Alantolactone inhibits cell autophagy and promotes apoptosis via AP2M1 in acute lymphoblastic leukemia. Cancer Cell Int. 2020;20(1):442. doi: 10.1186/s12935-020-01537-9.
  • Karthikeyan R, Devadasu C, Srinivasa Babu P. Isolation, characterization, and RP-HPLC estimation of P-coumaric acid from methanolic extract of Durva Grass (Cynodon dactylon Linn.) (Pers.). Int J Anal Chem. 2015;2015:201386–201387. doi: 10.1155/2015/201386.
  • Liu J, Liu P, Xu T, Chen Z, Kong H, Chu W, Wang Y, Liu Y. Berberine induces autophagic cell death in acute lymphoblastic leukemia by inactivating AKT/mTORC1 signaling. Drug Des Dev Ther. 2020;14:1813–23. doi: 10.2147/DDDT.S239247.
  • Siedlecka-Kroplewska K, Wozniak M, Kmiec Z. The wine polyphenol resveratrol modulates autophagy and induces apoptosis in MOLT-4 and HL-60 human leukemia cells. J Physiol Pharmacol. 2019;70:825–838. doi: 10.26402/jpp.2019.6.02.
  • Harikumar KB, Kunnumakkara AB, Sethi G, Diagaradjane P, Anand P, Pandey MK, Gelovani J, Krishnan S, Guha S, Aggarwal BB, et al. Resveratrol, a multitargeted agent, can enhance antitumor activity of gemcitabine in vitro and in orthotopic mouse model of human pancreatic cancer. Int J Cancer. 2010;127(2):257–268. doi: 10.1002/ijc.25041.
  • Grimwade D, Ivey A, Huntly BJP. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127(1):29–41. doi: 10.1182/blood-2015-07-604496.
  • Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–447. doi: 10.1182/blood-2016-08-733196.
  • Steele AJ, Jones DT, Ganeshaguru K, Duke VM, Yogashangary BC, North JM, Lowdell MW, Kottaridis PD, Mehta AB, Prentice AG, et al. The sesquiterpene lactone parthenolide induces selective apoptosis of B-chronic lymphocytic leukemia cells in vitro. Leukemia. 2006;20(6):1073–1079. doi: 10.1038/sj.leu.2404230.
  • Lan B, Wan Y-J, Pan S, Wang Y, Yang Y, Leng Q-L, Jia H, Liu Y-H, Zhang C-Z, Cao Y, et al. Parthenolide induces autophagy via the depletion of 4E-BP1. Biochem Biophys Res Commun. 2015;456(1):434–439. doi: 10.1016/j.bbrc.2014.11.102.
  • Itoh T, Ohguchi K, Nozawa Y, Akao Y. Intracellular glutathione regulates sesquiterpene lactone-induced conversion of autophagy to apoptosis in human leukemia HL60 cells. Anticancer Res. 2009;29(4):1449–1457.
  • Xiao J, Zhang B, Yin S, Xie S, Huang K, Wang J, Yang W, Liu H, Zhang G, Liu X, et al. Quercetin induces autophagy-associated death in HL-60 cells through CaMKKβ/AMPK/mTOR signal pathway. ABBS. 2022;54(9):1244–1256. doi: 10.3724/abbs.2022117.
  • Fang Y, Zhang Q, Yuan X, Lv C, Zhang J, Zhu Y, Wei Z, Xia Y, Dai Y. Tetrandrine, an immunosuppressive alkaloid isolated from Steohania tetrandra S. Moore, induces the generation of Treg cells through enhancing fatty acid oxidation. Immunology. 2022;166(4):492–506. doi: 10.1111/imm.13500.
  • Wang J, Yao Z, Lai X, Bao H, Li Y, Li S, Chang L, Zhang G. Tetrandrine sensitizes nasopharyngeal carcinoma cells to irradiation by inducing autophagy and inhibiting MEK/ERK pathway. Cancer Med. 2020;9(19):7268–7278. doi: 10.1002/cam4.3356.
  • Liu T, Men Q, Wu G, Yu C, Huang Z, Liu X, Li W. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells. Oncotarget. 2015;6(10):7992–8006. doi: 10.18632/oncotarget.3505.
  • Pan Y, Chen L, Li R, Liu Y, Nan M, Hou L. Tanshinone IIA induces autophagy and apoptosis via PI3K/Akt/mTOR axis in acute promyelocytic leukemia NB4 cells. Evid Based Complement Alternat Med. 2021;2021:3372403–3372409. doi: 10.1155/2021/3372403.
  • Zhou X, Xu Z, Li A, Zhang Z, Xu S. Double-sides sticking mechanism of vinblastine interacting with α,β-tubulin to get activity against cancer cells. J Biomol Struct Dyn. 2019;37(15):4080–4091. doi: 10.1080/07391102.2018.1539412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.