125
Views
0
CrossRef citations to date
0
Altmetric
Articles

Pyridaben resistance, inheritance and target site mutations in Neoseiulus californicus (McGregor) (Acari: Phytoseiidae)

&
Pages 277-282 | Received 06 Jun 2022, Accepted 30 Mar 2023, Published online: 09 Aug 2023

References

  • Adesanya AW, Cardenas A, Lavine MD, Walsh DB, Lavine LC, Zhu F. 2020. RNA interference of NADPH-Cytochrome P450 reductase increases susceptibilities to multiple acaricides in Tetranychus urticae. Pesticide Biochemistry and Physiology. 165:1–11.
  • Albayrak T, Yorulmaz S, Inak E, Toprak U, Leeuwen TV. 2021. Pirimicarb resistance and associated mechanisms in field-collected and selected populations of Neoseiulus californicus. Pesticide Biochemistry and Physiology. 180:104984.
  • Argov Y, Berkeley M, Domeratzky S, Melamed E, Weintraub P, Palevsky E. 2006. Identification of pollens for small scale mass rearing of Neoseiulus californicus and a nove lmethod for quality control. Iobc Wprs Bulletın. 29:127.
  • Assis CPO, Manoel Gondim GC, Herbert J, Siqueira AA. 2018. Synergism to acaricides in resistant Neoseiulus californicus (Acari: Phytoseiidae), a predator of Tetranychus urticae (Acari: Tetranychidae). CropProtection. 106:139–145.
  • Bajda S, Dermauw W, Panteleri R, Sugimoto N, Douris V, Tirry L, Osakabe M, Vontas J, Van Leeuwen T. 2017. A mutation in the PSST homologue of complex I (NADH: ubiquinone oxidoreductase) from Tetranychus urticae is associated with resistance to METI acaricides. Insect Biochemical Molecular Biology. 80:79–90.
  • Bostanian NJ, Akalach M. 2006. The effect of indoxacarb and five other insecticides on Phytoseiulus persimilis (Acari: Phytoseiidae), Amblyseius fallacis (Acar: Phytoseiidae) and nymphs of Orius insidiosus (Hemiptera: Anthocoridae). Pesticide Management Science. 62:334–339.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgramm quantities of protein utilizing the principle of protein – dye b inding. Analytical Biochemistry. 72:248–254.
  • Cho JR, Kim YJ, Ahn YJ, Yoo JK, Lee JO. 1995. Monitoring of acaricide resistance in Şeld collected populations of Tetranychus urticae (Acari: Tetranychidae) in Korea. Korean Journal of Applied Entomology. 31:40–45.
  • Cock MJW, van Lenteren JC, Brodeur J, Barratt BIP, Bigler F, Bolckmans K, Coˆnsoli FL, Haas F, Mason PG, Parra JRP. 2010. Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control? BioControl. 55:199–218.
  • Cong L, Chen F, Yu S, Ding L, Yang J, Luo R, Tian H, Li H, Liu H, Ran C. 2016. Transcriptome and difference analysis of fenpropathrin resistant predatory mite, Neoseiulus barkeri (Hughes). International Journal of Molecular Sciences. 17:704.
  • Croft BA, Brown AWA, Hoying SA. 1976. Organophoshorus-resistance and its inheritance in the predaceous mite Amblyseius fallacis. Journal of Economic Entomology. 69:64–68.
  • Croft BA, Van de Baan HE. 1988. Ecological and genetic factors influencing evolution of pesticide resistance in tetranychid and phytoseiid mites. Experimental and Applied Acarology. 4:277–300.
  • Desneux N, Decourtye A, Delpuech JM. 2007. The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology. 52:81–106.
  • Devine GJ, Barber M, Denholm I. 2001. Incidence and inheritance of resistance to METI-acaricides in European strain of the two-spotted spider mite (Tetranychus urticae) (Acari: Tetranychidae). Pest Management Science. 57:443–448.
  • Ditillo JL, Kennedy GG, Walgenbach JF. 2016. Effects of Insecticides and fungicides commonly used in tomato production on Phytoseiulus persimilis (Acari: Phtyoseiidae). Journal of Economic Entomology. 109:2298–2308.
  • Duso C, Malagnini V, Pozzebon A, Castagnoli M, Liguori M, Simoni S. 2008. Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari: tetranychidae, Phytoseiidae). Biological Control. 47:16–21.
  • Georghiou GP. 1969. Genetics of resistance to insecticides in house flies and mosquitoes. Experimental Parasitology. 26:224–255.
  • Ghazy NA, Osakabe M, Negm MW, Schausberger P, Gotoh T, Amano H. 2016. Phytoseiid mites under environmental stress. Biological Control. 96:120–134.
  • Goka K. 1998. Mode of inheritance of resistance to three new acaricides in the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Experimental and Applied Acarology. 22:699–708.
  • Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment edit or and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41:95–98.
  • Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics. 20:1160–1166.
  • Kim YJ, Lee SH, Lee SW, Ahn YJ. 2004. Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. Pest Management Science. 60:1001–1006.
  • Kim YJ, Park HM, Cho JR, Ahn YJ. 2006. Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology. 99:954–958.
  • Kostiainen T, Hoy MA. 1995. Laboratory evaluation of a laboratory-selected organophosphate-resistant strain of Amblyseius finlandicus (Acari: Phytoseiidae) for possible use in Finnish apple orchards. Biocontrol Science Technology. 5:297–311.
  • Kwon DH, Choi JY, Je YH, Lee SH. 2012. The overexpression of acetylcholinesterase compensates for the reduced catalytic activity caused by resistance conferring mutations in Tetranychus urticae. Insect Biochemistry Molecular Biology. 42:212–219.
  • Kwon DH, Clark JM, Lee SH. 2010a. Cloning of a sodium channel gene and identification of mutations putatively associated with fenpropathrin resistance in Tetranychus urticae. Pesticide Biochemistry and Physiology. 97:93–100.
  • Kwon DH, Im JS, Ahn JJ, Lee JH, Clark JM, Lee SH. 2010b. Acetylcholinesterase point mutations putatively associated with monocrotophos resistance in the two-spotted spider mite. Pesticide Biochemistry and Physiology. 96:36–42.
  • Kwon DH, Yoon KS, Clark JM, Lee SH. 2010c. A point mutation in a glutamate gated chloride channel confers abamectin resistance in the two-spotted spider mite, Tetranychus urticae Koch. Insect Molecular Biology. 19:583–591.
  • Liu Z, Williamson MS, Lansdell SJ, Han Z, Denholm I, Millar NS. 2006. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. Journal of Neurochemistry. 99:1273–1281.
  • Lummen P. 2007. Mitochondrial electron transport complexes as biochemical target sites for insecticides and acaricides. In: Ishaaya I, Nauen R Horowitz A, editors. Insecticides design using advanced technologies. Berlin: Springer; pp. 197–215. doi:10.1007/978-3-540-46907-0_8.
  • Maroufpoor M, Ghoosta Y, Pourmirza A, Lotfalizadeh H. 2016. The effects of selected acaricides on life table parameters of the predatory mite, Neoseiulus californicus fed on European red mite. North-Western Journal of Zoology. 12:1–6.
  • Namin HH, Zhurova V, Spenlera J, Grbića M, Grbića V, Scott IM. 2020. Resistance to pyridaben in Canadian greenhouse populations of two-spotted spider mites, Tetranychus urticae (Koch). Pesticide Biochemistry and Physiology. 170:104677.
  • Osakabe M, Ryuji U, Koichi G. 2009. Evolutionary aspects of acaricide-resistance development in spider mites. Psyche. 1–11. doi:10.1155/2009/947439.
  • Rose RL, Barbhaiya R, Roe G, Rock E, Hodgson, Hodgson E. 1995. Cytochrome P450-associated insecticide resistance and the development of biochemical diagnostic assays in heliothis virescens. Pesticide Biochemistry and Physiology. 51:178–191.
  • Roush RT, McKenzie JA. 1987. Ecological genetics of insecticide and acaricide resistance. Annual Review Entomology. 32:361–380.
  • Sato ME, Mıyata T, Sılva MD, Adalton Raga A, Fılho MF. 2004. Selections for fenpyroximate resistance and susceptibility, and inheritance, cross-resistance and stability of fenpyroximate resistance in Tetranychus urticae Koch (Acari: Tetranychidae). Applied Entomology and Zoology. 39:293–302.
  • Schulten GGM, Van de Klashorst G 1979. Genetics of resistance to parathion and demeton-S-methly in Phytoseiulus persimilis (Acari: phytoseiidae). Proceedings of 4th Int. Cong. Acard., Saalfalden, Austria. p. 519–524.
  • Snoeck S, Kurlovs AH, Bajda S, Feyereisen R, Greenhalgh R, Villacis-Perez E, Kosterlitz O, Dermauw W, Clark RM, Van Leeuwen T. 2019. High-resolution QTL mapping in Tetranychus urticae reveals acaricide-specific responses and common target-site resistance after selection by different METI-I acaricides. Insect Biochemistry and Molecular Biology. 110:19–33.
  • Song C, Kim GH, Ahn SJ, Park NJ, Cho KY. 1995. Acaricide susceptibilities of Şeld-collected populations of two-spotted spider mite, Tetranychus urticae (Acari: tetranychidae) from apple orchards. Korean Journal of Applied Entomology. 34:328–333.
  • Stumpf N, Nauen R. 2001. Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari: Tetranychidae). Journal of Economic Entomology. 94:1577–1583.
  • Tomlin C, editor. 2003. The pesticide manual, 13th ed. Crop protection publications. Farnham, Surrey, UK: British Crop Protection Council.
  • Van Leeuwen T, Dermauw W. 2016. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual Review of Entomology. 61:475–498.
  • Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. 2010. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochemistry and Molecular Biology. 40:563–572.
  • Van Leeuwen T, Vontas J, Tsagkarakou A, Tirry L. 2009. Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. In: Biorational control of arthropod pests. Dordrecht: Springer Netherlands; pp. 347–393. doi:10.1007/978-90-481-2316-2_14.
  • Van Pottelberge S, Van Leeuwen T, Nauen R, Tirry L. 2009. Resistance mechanisms to mitochondrial electron transport inhibitors in a field-collected strain of Tetranychus urticae Koch (Acari: Tetranychidae). Bulletin Entomology Research. 99:23–31.
  • Wu K, Hoy MA, Coulombe RA. 2016. The Glutathione-S-Transferase, Cytochrome P450 and Carboxyl/Cholinesterase gene superfamilies in predatory mite Metaseiulus occidentalis. PLoS One. 11:116–129.
  • Wu M, Adesanya AW, Morales MA, Walsh DB, Lavine LC, Lavine MD, Zhu F. 2019. Multiple acaricide resistance and underlying mechanisms in Tetranychus urticae on hops. Journal of Pest Science. 92:543–555.
  • Yorulmaz Salman S, Ay R. 2013. Determination of susceptibility and detoxification enzyme levels of predatory mite Neoseiulus californicus (Acari: Phytoseiidae) populations to three different acaricides. Turkish Journal of Entomology. 37:105–116.
  • Yorulmaz Salman S, Ay R. 2014. Determination of the inheritance, cross‐ resistance and detoxifying enzyme levels of a laboratory‐selected, spiromesifen‐resistant population of the predatory mite Neoseiulus californicus (Acari: Phytoseiidae). Pest Management Science. 70:819–826.
  • Yorulmaz Salman S, Aydınlı F, Ay R. 2015a. Etoxazole resistance in predatory mite Phytoseiulus persimilis A.-H. (Acari: Phytoseiidae): Cross-resistance, inheritance and biochemical resistance mechanisms. Pesticide Biochemistry and Physiology. 122:96–102.
  • Yorulmaz Salman S, Aydınlı F, Ay R. 2015b. Selection for resistance: Cross-resistance, inheritance, synergists and biochemical mechanisms of resistance to acequinocyl in Phytoseiulus persimilis A.H. (Acari: Phytoseiidae). Crop Protection. 67:109–115.
  • Yorulmaz Salman S, Keskin C. 2019. The effects of milbemectin and spirodiclofen resistance on Phytoseiulus persimilisAH (Acari: Phytoseiidae) life table parameters. Crop Protection. 124:104751.
  • Yu SJ. 2008. The toxicology and biochemistry of insecticides. Boca Raton, USA: CRC Pres Taylor- Francis Group. p. 250.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.