176
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The overlooked underground diversity: physical and chemical edaphic structure predict morphological variation in South American amphisbaenians (Squamata: Amphisbaenidae)

ORCID Icon, , , , , , , ORCID Icon, & show all
Pages 370-382 | Received 18 Jul 2022, Accepted 09 Nov 2022, Published online: 20 Nov 2022

References

  • Abe AS, Johansen K. 1987. gas exchange and ventilatory responses to hypoxia and hypercapnia in Amphisbaena alba (Reptilia: Amphisbaenia). J Exp Biol. 127(1):159–172.
  • Albert EM, Zardoya R, García-París M. 2007. Phylogeographical and speciation patterns in subterranean worm lizards of the genus Blanus (Amphisbaenia: Blanidae). Mol Ecol. 16(7):1519–1531.
  • Almeida JPFA, Thomé MTC, Sturaro MJ, Pereira RJ, Mott T. 2020. The relative role of glacial refugia and longstanding barriers in the diversification of a fossorial squamate. Syst Biodivers. 18(5):447–463.
  • Barton K 2020. MuMIn: multi-model inference. R package version 1.47.1. [cited 2022 Jun 10]. Available from: https://CRAN.R-project.org/package=MuMIn
  • Berthold AA. 1859. Einige neue Reptilien des akad. zoolog. Museums in Göttingen. Nachr Georg-August-Univ Königl Ges Wiss Göttingen. 17:179–181.
  • Brandley MC, Huelsenbeck JP, Wiens JJ. 2008. Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evol. 62(8):2042–2064.
  • Cifuentes-Croquevielle C, Stanton DE, Armesto JJ. 2020. Soil invertebrate diversity loss and functional changes in temperate forest soils replaced by exotic pine plantations. Sci Rep. 10(1):7762.
  • Civantos E, Martín J, López P. 2003. Fossorial life constrains microhabitat selection of the amphisbaenian Trogonophis wiegmanni. Can J Zool. 81(11):1839–1844.
  • Dal Vechio F, Teixeira M, Mott T, Rodrigues MT. 2018. Rediscovery of the poorly known Amphisbaena bahiana Vanzolini, 1964 (Squamata, Amphisbaenidae), with data on its phylogenetic placement, external morphology and natural history. S Am J Herpetol. 13(3):238–248.
  • Dorgan K. 2015. The biomechanics of burrowing and boring. J Exp Biol. 218(2):176–183.
  • Dray S, Dufour A. 2007. The ade4 package: implementing the duality diagram for ecologists. J Stat Softw. 22(4):1–20.
  • Evon P, Labonne L, Padoan E, Vaca-Garcia C, Montoneri E, Boero V, Negre M. 2021. A new composite biomaterial made from sunflower proteins, urea, and soluble polymers obtained from industrial and municipal biowastes to perform as slow release fertilizer. Coatings. 11(1):43.
  • Fitzpatrick MC, Mokany K, Manion G, Lisk M, Ferrier S, Nieto-Lugilde D 2021. Gdm: generalized dissimilarity modeling. R package version 1.4.2.2. [cited 2022 Jun 10]. Available from: https://CRAN.R-project.org/package=gdm
  • Fox J, Weisberg S 2019. An {R} companion to applied regression. [cited 2022 Jun 10]. Available from: https://socialsciences.mcmaster.ca/jfox/Books/Companion
  • Fraga R, Ferrão M, Stow AJ, Magnusson WE, Lima AP. 2018. Different environmental gradients affect different measures of snake β-diversity in the Amazon rainforests. PeerJ. 6:e5628.
  • Fraga R, Lima AP, Magnusson WE. 2011. Mesoscale spatial ecology in a tropical snake assemblage: the width of riparian corridors in central Amazon. Herpetol J. 21:51–57.
  • Gans C. 1968. Relative success of divergent pathways in amphisbaenian specialization. Am Nat. 102(926):345–362.
  • Gans C. 1969. Amphisbaenians, reptiles specialized for a burrowing existence. Endeavour. 28:146–151.
  • Gans C. 1978. The characteristics and affinities of the Amphisbaenia. Trans Zool Soc London. 34(4):347–416.
  • Gans C, Montero R. 2008. An atlas of amphisbaenian skull anatomy. In: Gans C, Gaunt AS, Adler K, editors. Biology of reptilia: morphology and appendicular locomotor apparatus of Lepidosauria. London: Society for the Study of Amphibians and Reptiles. p. 621–732.
  • Giradoux P 2021. Pgirmess: spatial analysis and data mining for field ecologists. R package version 1.7.0. [cited 2022 Jun 10]. Available from: https://CRAN.R-project.org/package=pgirmess
  • Greenville AC, Dickman CR. 2009. Factors affecting habitat selection in s specialist fossorial skink. Biol J Linn Soc. 97(3):531–544.
  • Hampton PM, Moon BR. 2012. Gape size, its morphological basis, and the validity of gape indices in western diamond-back rattlesnakes (Crotalus atrox). J Morphol. 274(2):194–202.
  • Heneghan L, Coleman DC, Zou X, Crossley DA, Haines BL. 1999. Soil microarthropod contributions to decomposition dynamics: tropical-temperate comparisons of a single substrate. Ecol. 80(6):1873–1882.
  • Hohl LSL, Loguercio MFC, Beundía RA, Almeida-Santos M, Viana LA, Barros-Filho JD, Rocha-Barbosa O. 2014. Fossorial gait patterns and performance of a shovel-headed amphisbaenian. J Zool. 294(4):234–240.
  • Hohl LSL, Loguercio MFC, Sicuro FL, Barros-Filho JD, Rocha-Barbosa O. 2017. Body and skull morphometric variations between two shovel-headed species of Amphisbaenia (Reptilia: Squamata) with morphofunctional inferences on burrowing. PeerJ. 5:e3581.
  • Jelinek AR, Chemale-Jr F, van der Beek PA, Guadagnin F, Cupertino JA. 2014. Denudation history and landscape evolution of the northern east-Brazilian continental margin from apatite fission-track thermochronology. J S Am Earth Sci. 54:158–181.
  • Johansen K, Abe AS, Weber RE. 1980. Respiratory properties of whole blood and hemoglobin from the burrowing reptile, Amphisbaena alba. J Exp Zool. 214(1):71–77.
  • Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinfor. 24(11):1403–1405.
  • Jombart T, Devillard S, Balloux F. 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genomics. 11:94.
  • Kawecki TJ, Ebert D. 2004. Conceptual issues in local adaptation. Ecol Lett. 7(12):1225–1241.
  • Kearney M. 2003. Systematics of the Amphisbaenia (Lepidosauria: Squamata) based on morphological evidence from recent and fossil forms. Herpetol Monogr. 17(1):1–74.
  • Khalid Al-Sadoon M, Ahmad Paray B, Rudayni HA. 2016. Diet of the worm lizard, Diplometopon zarudnyi (Nikolsky, 1907), in Riyadh province, Saudi Arabia (Reptilia: Trogonophidae). Zool Middle East. 62(3):227–230.
  • Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J. 2015. The extended evolutionary synthesis: its structure, assumptions and predictions. Proc Royal Soc B-Biol Sci. 282(1813):20151019.
  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S. 1997. Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol. 33(4):159–193.
  • Lleonart J, Salat J, Torres GL. 2000. Removing allometric effects of body size in morphological analysis. J Theor Biol. 205(1):85–93.
  • Longrich NR, Vinther J, Pyron RA, Pisani D, Gauthier JA. 2015. Biogeography of worm lizards (Amphisbaenia) driven by end-cretaceous mass extinction. Proc Royal Soc B-Biol Sci. 282(1813):1–10.
  • Luna F, Antinuchi CD. 2006. Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can J Zool. 84(5):661–667.
  • Maia SMF, Xavier FAS, Oliveira TS, Mendonça ES, Araújo-Filho JA. 2008. Frações de nitrogênio em luvissolo sob sistemas agroflorestais e convencional no semiárido cearense. Rev Bras Cienc Solo. 32(1):381–392.
  • Martín J, López P, Gutiérrez E, García LV. 2015. Natural and anthropogenic alterations of the soil affect body condition of the fossorial amphisbaenian Trogonophis wiegamnni in North Africa. J Arid Environ. 122:30–36.
  • Martín J, López P, Salvador A. 1991. Microhabitat selection of the amphisbaenian Blanus cinereus. Copeia. 1991(4):1142–1146.
  • Martín J, Ortega J, López P, Pérez-Cembranos A, Pérez-Mellado V. 2013. Fossorial life does not constrain diet selection in the amphisbaenian Trogonophis wiegmanni. J Zool. 291(3):226–233.
  • Maschio GF, Prudente ALC, Mott T. 2009. Water dispersal of Amphisbaena amazonica (Squamata: Amphisbaenidae) in Brazilian Amazonia. Zool. 26(3):567–570.
  • McNab BK. 1966. The metabolism of fossorial rodents: a study of convergence. Ecol. 47(5):712–733.
  • Mehta RS, Ward AB, Alfaro ME, Wainwright PC. 2010. Elongation of the body in eels. Integr Comp Biol. 50(6):1091–1105.
  • Morinaga G, Bergmann PJ. 2020. Evolution of fossorial locomotion in the transition from tetrapod to snake-like lizards. Proc Royal Soc B-Biol. 287(1923):1–6.
  • Mott T 2006. Molecular systematics of Brazilian amphisbaenids [PhD thesis]. [San Diego (CA)]: University of California.
  • Mott T, Vieites DR. 2009. Molecular phylogenetics reveals extreme morphological homoplasy in Brazilian worm lizards challenging current taxonomy. Mol Phylogenet Evol. 51(2):190–200.
  • Mulvaney A, Castoe TA, Ashton KG, Krysko KL, Parkinson CL. 2005. Evidence of population genetic structure within the Florida worm lizard, Rhineura floridana (Amphisbaenia: Rhineuridae). J Herpetol. 39(1):118–124.
  • Navas CA, Antoniazzi MM, Carvalho JE, Chaui-Berlink JG, James RS, Jared C, Kohlsdorf T, Pai-Silva MD, Wilson RS. 2004. Morphological and physiological specialization for digging in amphisbaenians, an ancient lineage of fossorial vertebrates. J Exp Biol. 207(14):2433–2441.
  • Nawaz MF, Bourrié G, Trolard F. 2013. Soil compaction impact and modelling. A review. Agron Sustain Dev. 33(2):291–309.
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O´Hara RB, Simpson GL, Solymos P, et al. 2020. Vegan: community ecology package. R package version 2.5-7. [cited 2022 Jun 10]. Available from: https://CRAN.R-project.org/package=vegan
  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D´amico JA, Itoua I, Strand HE, Morrison JC, et al. 2001. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience. 51(11):933–938.
  • Perez R, Borges-Martins M. 2019. Integrative taxonomy of small worm lizards from Southern South America, with description of three new species (Amphisbaenia: Amphisbaenidae). Zool Anz. 283:124–141.
  • Poggio L, de Sousa LM, Batjes NH, Heuvelink GBM, Kempen B, Ribeiro E, Rossiter D. 2021. SoilGrids 2.0: producing soil information fot the globe with quantified spatial uncertainty. Soil. 7(1):217–240.
  • Ribeiro S, Gomes JO, Silva HLR, Cintra CED, Silva-Jr NJ. 2016. A new two-pored species of Amphisbaena (Squamata, Amphisbaenidae) from the Brazilian Cerrado, with a key to the two-pored species of Amphisbaena. Zootaxa. 4147(2):124–142.
  • Ribeiro LB, Gomides S, Costa HC. 2018. A New Species of Amphisbaena from Northeastern Brazil (Squamata: Amphisbaenidae). J Herpetol. 52(2):234–241.
  • Ribeiro LB, Gomides SC, Costa HC. 2020. A new worm lizard species (Squamata: Amphisbaenidae: Amphisbaena) with non-autotomic tail, from Northeastern Brazil. J Herpetol. 54(1):9–18.
  • Ribeiro S, Santos-Jr AP, Zaher H. 2015. A new species of Leposternon Wagler, 1824 (Squamata, Amphisbaenia) from northeastern Argentina. Zootaxa. 4034(2):309–324.
  • Ribeiro S, Sá V, Santos-Jr AP, Graboski R, Zaher H, Guedes AG, Andrade SP, Vaz-Silva W. 2019. A new species of the Amphisbaena (Squamata, Amphisbaenidae) from the Brazilian Cerrado with a key for the two-pored species. Zootaxa. 4550(3):301–320.
  • Seebacher F, Webster MM, James RS, Tallis J, Ward AJW. 2016. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickback (Gasterosteus aculeatus). R Soc Open Sci. 3(6):160316.
  • Tavares AP, Carvalho JJS, Ribeiro LB. 2017. First record of (Squamata, Amphisbaenidae) in the state of Pernambuco, Brazil: including a distribution map and soil classification of its occurrence. Herpetol Notes. 10:19–22.
  • Vanzolini PE. 1991. Two further new species of Amphisbaena from the semi-arid northeast of Brasil (Reptilia, Amphisbaenia). Pap Avulsos Zool. 37:347–361.
  • Venables WN, Ripley BD. 2002. Modern applied statistics with S. New York (NY): Springer. p. 292–299.
  • Vidal N, Azvolinsky A, Cruaud C, Hedges SB. 2008. Origin of tropical American burrowing reptiles by transatlantic rafting. Biol Lett. 4(1):115–118.
  • Webb JK, Shine R, Branch WR, Harlow PS. 2000. Life underground: food habits and reproductive biology of two amphisbaenian species from South Africa. J Herpetol. 34(4):510–516.
  • Weber RE, Johansen K, Abe AS. 1981. Myoglobin from the burrowing reptile Amphisbaena alba. Concentrations and Functional Characteristics. Comp Biochem Physiol Part A Physiol. 68(2):159–165.
  • Werneck FP. 2011. The diversification of eastern South American open vegetation biomes: historical biogeography and perspectives. Quat Sci Rev. 30(13):1630–1648.
  • Werneck FP, Gamble T, Colli GR, Rodrigues MT, Sites-Jr JW. 2012. Deep diversification ang long-term persistence in the South American “dry diagonal”: integrating continent-wide phylogeography and distribution modeling of geckos. Evol. 66(10):3014–3034.
  • Whitehead A, Crawford DL. 2006. Variation within and among species in gene expression: raw material for evolution. Mol Ecol. 15(5):1197–1211.
  • Wiens JJ, Brandley MC, Reeder TW. 2006. Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in Squamate reptiles. Evol. 60(1):123–141.
  • Wright S. 1943. Isolation by distance. Genetics. 28(2):114–138.
  • Zamudio KR, Bell RC, Mason NA. 2016. Phenotypes in phylogeography: species traits, environmental variation, and vertebrate diversification. Pnas. 113(29):8041–8048.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.