207
Views
2
CrossRef citations to date
0
Altmetric
Original Article

K+ channel reorganization and homeostatic plasticity during postembryonic development: biophysical and genetic analyses in acutely dissociated Drosophila central neurons

, , , , , & show all
Pages 259-275 | Received 30 Sep 2016, Accepted 27 Oct 2016, Published online: 21 Nov 2016

References

  • Atkinson, N.S., Robertson, G.A., & Ganetzky, B. (1991). A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science, 253, 551–555. doi: 10.1126/science.1857984.
  • Atkinson, N.S., Brenner, R., Chang, W., Larimer, J.L., & Yu, J. (2000). Molecular separation of two behavioral phenotypes by a mutation affecting the promoters of a Ca-activated K channel. Journal of Neuroscience, 20, 2988–2993.
  • Bainbridge, S.P., & Bownes, M. (1981). Staging the metamorphosis of Drosophila melanogaster. Journal of Embryology and Experimental Morphology, 66, 57–80.
  • Baines, R.A., & Bate, M. (1998). Electrophysiological development of central neurons in the Drosophila embryo. Journal of Neuroscience, 18, 4673–4683.
  • Baker, K., & Salkoff, L. (1990). The Drosophila Shaker gene codes for a distinctive K+ current in a subset of neurons. Neuron, 4, 129–140.
  • Broadie, K.S., & Bate, M. (1993). Development of larval muscle properties in the embryonic myotubes of Drosophila melanogaster. Journal of Neuroscience, 13, 167–180.
  • Budnik, V., Zhong, Y., & Wu, C.F. (1990). Morphological plasticity of motor axons in Drosophila mutants with altered excitability. Journal of Neuroscience, 10, 3754–3768.
  • Butler, A., Wei, A.G., Baker, K., & Salkoff, L. (1989). A family of putative potassium channel genes in Drosophila. Science, 243, 943–947.doi: 10.1126/science.2493160
  • Byerly, L., & Leung, H.T. (1988). Ionic currents of Drosophila neurons in embryonic cultures. Journal of Neuroscience, 8, 4379–4393.
  • Choi, J.C., Park, D., & Griffith, L.C. (2004). Electrophysiological and morphological characterization of identified motor neurons in the Drosophila third instar larva central nervous system. Journal of Neurophysiology, 91, 2353–2365.doi: 10.1152/jn.01115.2003
  • Consoulas, C., Restifo, L.L., & Levine, R.B. (2002). Dendritic remodeling and growth of motoneurons during metamorphosis of Drosophila melanogaster. Journal of Neuroscience, 22, 4906–4917.
  • Duch, C., & Levine, R.B. (2000). Remodeling of membrane properties and dendritic architecture accompanies the postembryonic conversion of a slow into a fast motoneuron. Journal of Neuroscience, 20, 6950–6961.
  • Elkins, T., & Ganetzky, B. (1988). The roles of potassium currents in Drosophila flight muscles. Journal of Neuroscience, 8, 428–434.
  • Elkins, T., Ganetzky, B., & Wu, C.F. (1986). A Drosophila mutation that eliminates a calcium-dependent potassium current. Proceedings of the National Academy of Sciences U S A, 83, 8415–8419.doi: 10.1073/pnas.83.21.8415
  • Gasque, G., Labarca, P., Reynaud, E., & Darszon, A. (2005). Shal and shaker differential contribution to the K+ currents in the Drosophila mushroom body neurons. Journal of Neuroscience, 25, 2348–2358. doi: 10.1523/JNEUROSCI.4384-04.2005.
  • Getting, P.A. (1989). Emerging principles governing the operation of neural networks. Annual Review of Neuroscience, 12, 185–204.doi: 10.1146/annurev.neuro.12.1.185
  • Gho, M., & Mallart, A. (1986). Two distinct calcium-activated potassium currents in larval muscle fibres of Drosophila melanogaster. Pflugers Arch, 407, 526–533.doi: 10.1007/BF00657511
  • Goodman, C.S., & Shatz, C.J. (1993). Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell, 72 Suppl, 77–98.doi: 10.1016/S0092-8674(05)80030-3
  • Harris-Warrick, R.M., & Marder, E. (1991). Modulation of neural networks for behavior. Annual Review of Neuroscience, 14, 39–57.doi: 10.1146/annurev.ne.14.030191.000351
  • Haugland, N.H., & Wu, C.-F. (1990). A voltage-clamp analysis of gene-dosage effects of the Shaker locus on larval muscle potassium currents in Drosophila. Journal of Neuroscience, 10, 1357–1371.
  • Hebbar, S., Hall, R.E., Demski, S.A., Subramanian, A., & Fernandes, J.J. (2006). The adult abdominal neuromuscular junction of Drosophila: A model for synaptic plasticity. Developmental Neurobiology, 66, 1140–1155.doi: 10.1002/neu.20279
  • Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nature Reviews Neuroscience, 4, 266–275.doi: 10.1038/nrn1074
  • Hille, B. (1992). Ionic channels of excitable membranes. Sunderland, MA: Sinauer.
  • Hille, B. (2001). Ion channels of excitable membranes. Sunderland, MA: Sinauer Associates, Inc.
  • Iverson, L.E., Tanouye, M.A., Lester, H.A., Davidson, N., & Rudy, B. (1988). A-type potassium channels expressed from Shaker locus cDNA. Proceedings of the National Academy of Sciences U.S.A, 85, 5723–5727.doi: 10.1073/pnas.85.15.5723
  • Jones, S.M., & Ribera, A.B. (1994). Overexpression of a potassium channel gene perturbs neural differentiation. Journal of Neuroscience, 14, 2789–2799.
  • Kamb, A., Iverson, L.E., & Tanouye, M.A. (1987). Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell, 50, 405–413.doi: 10.1016/0092-8674(87)90494-6
  • Kaplan, W.D., & Trout, W.E. III (1969). The behavior of four neurological mutants of Drosophila. Genetics, 61, 399–409.
  • Kimura, K., & Truman, J. (1990). Postmetamorphic cell death in the nervous and muscular systems of Drosophila melanogaster. Journal of Neuroscience, 10, 403–411.
  • Komatsu, A., Singh, S., Rathe, P., & Wu, C.F. (1990). Mutational and gene dosage analysis of calcium-activated potassium channels in Drosophila: Correlation of micro- and macroscopic currents. Neuron, 4, 313–321.doi: 10.1016/0896-6273(90)90105-O
  • Kramer, R.H., & Zucker, R.S. (1985). Calcium-induced inactivation of calcium current causes the inter-burst hyperpolarization of Aplysia bursting neurones. The Journal of Physiology, 362, 131–160.doi: 10.1113/jphysiol.1985.sp015667
  • Lee, J., Ueda, A., & Wu, C.F. (2008). Pre- and post- synaptic mechanisms of synaptic strength homeostasis revealed by Slowpoke and Shaker K+ channel mutations in Drosophila. Neuroscience, 154, 1283–1296. doi: 10.1016/j.neuroscience.2008.04.043.
  • Lee, J., & Wu, C.F. (2010). Orchestration of stepwise synaptic growth by K+ and Ca2+ channels in Drosophila. Journal of Neuroscience, 30, 15821–15833. doi: 10.1523/JNEUROSCI.3448-10.2010.
  • Li, H., Li, Y., Lei, Z., Wang, K., & Guo, A. (2013). Transformation of odor selectivity from projection neurons to single mushroom body neurons mapped with dual-color calcium imaging. Proceedings of the National Academy of Sciences U.S.A, 110, 12084–12089.doi: 10.1073/pnas.1305857110
  • MacLean, J.N., Zhang, Y., Johnson, B.R., & Harris-Warrick, R.M. (2003). Activity-independent homeostasis in rhythmically active neurons. Neuron, 37, 109–120.doi: 10.1016/S0896-6273(02)01104-2
  • O'Dowd, D.K., Ribera, A.B., & Spitzer, N.C. (1988). Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons. Journal of Neuroscience, 8, 792–805.
  • Peng, I.F., & Wu, C.F. (2007a). Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila. Journal of Neurophysiology, 97, 780–794. doi: 10.1152/jn.01012.2006.
  • Peng, I.F., & Wu, C.F. (2007b). Drosophila cacophony channels: a major mediator of neuronal Ca2+ currents and a trigger for K+ channel homeostatic regulation. Journal of Neuroscience, 27, 1072–1081. doi: 10.1523/JNEUROSCI.4746-06.2007.
  • Ribera, A.B., & Spitzer, N.C. (1990). Differentiation of IKA in amphibian spinal neurons. Journal of Neuroscience, 10, 1886–1891.
  • Rogero, O., & Tejedor, F.J. (1995). Immunochemical characterization and developmental expression of Shaker potassium channels from the nervous system of Drosophila. Journal of Biological Chemistry, 270, 25746–25751.doi: 10.1074/jbc.270.43.25746
  • Ryglewski, S., & Duch, C. (2009). Shaker and Shal mediate transient calcium-independent potassium current in a Drosophila flight motoneuron. Journal of Neurophysiology, 102, 3673–3688.doi: 10.1152/jn.00693.2009
  • Saito, M., & Wu, C.F. (1991). Expression of ion channels and mutational effects in giant Drosophila neurons differentiated from cell division-arrested embryonic neuroblasts. Journal of Neuroscience, 11, 2135–2150.
  • Salkoff, L., & Wyman, R. (1981). Genetic modification of potassium channels in Drosophila Shaker Mutants. Nature, 293, 228–230.doi: 10.1038/293228a0
  • Salkoff, L., & Wyman, R. (1983). Ion currents in Drosophila flight muscles. Journal of Physiology - Paris, 80, 275–282. doi: 10.1113/jphysiol.1983.sp014649
  • Singh, S., & Wu, C.F. (1989). Complete separation of four potassium currents in Drosophila. Neuron, 2, 1325–1329.doi: 10.1016/0896-6273(89)90070-6
  • Singh, S., & Wu, C.F. (1990). Properties of potassium currents and their role in membrane excitability in Drosophila larval muscle fibers. Journal of Experimental Biology, 152, 59–76.
  • Solc, C.K., & Aldrich, R.W. (1988). Voltage-gated potassium channels in larval CNS neurons of Drosophila. Journal of Neuroscience, 8, 2556–2570.
  • Spitzer, N.C. (1994) Development of voltage-dependent and ligand-gated channels in excitable membranes. In J. van Pelt, M.A. Corner, H.B.M. Uylings, & F.H. Lopes da Silva (Eds.), Progress in brain research (pp 169–179). Amsterdam: Elsevier.
  • Spitzer, N.C. (1999). New dimensions of neuronal plasticity. Nature Neuroscience, 2, 489–491.doi: 10.1038/9132
  • Srinivasan, S., Lance, K., & Levine, R.B. (2012). Contribution of EAG to excitability and potassium currents in Drosophila larval motoneurons. Journal of Neurophysiology, 107, 2660–2671.doi: 10.1152/jn.00201.2011
  • Timpe, L.C., Jan, Y.N., & Jan, L.Y. (1988). Four cDNA clones from the Shaker locus of Drosophila induce kinetically distinct A-type potassium currents in Xenopus oocytes. Neuron, 1, 659–667.doi: 10.1016/0896-6273(88)90165-1
  • Truman, J.W. (1990). Metamorphosis of the central nervous system of Drosophila. Journal of Neurobiology, 21, 1072–1084.doi: 10.1002/neu.480210711
  • Tsunoda, S., & Salkoff, L. (1995). Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents. Journal of Neuroscience, 15, 1741–1754.
  • Turrigiano, G.G. (1999). Homeostatic plasticity in neuronal networks: The more things change, the more they stay the same. Trends in Neurosciences, 22, 221–227.doi: 10.1016/S0166-2236(98)01341-1
  • Turrigiano, G.G. (2008). The self-tuning neuron: Synaptic scaling of excitatory synapses. Cell, 135, 422–435.doi: 10.1016/j.cell.2008.10.008
  • Vergara, C., Latorre, R., Marrion, N.V., & Adelman, J.P. (1998). Calcium-activated potassium channels. Current Opinion in Neurobiology, 8, 321–329.doi: 10.1016/S0959-4388(98)80056-1
  • Wei, A., Covarrubias, M., Butler, A., Baker, K., Pak, M., & Salkoff, L. (1990). K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science, 248, 599–603.
  • Williams, D.W., & Truman, J.W. (2005). Remodeling dendrites during insect metamorphosis. Journal of Neurobiology, 64, 24–33.doi: 10.1002/neu.20151
  • Wright, N.J., & Zhong, Y. (1995). Characterization of K+ currents and the cAMP-dependent modulation in cultured Drosophila mushroom body neurons identified by lacZ expression. Journal of Neuroscience, 15, 1025–1034.
  • Wu, C.F., Suzuki, N., & Poo, M.M. (1983). Dissociated neurons from normal and mutant Drosophila larval central nervous system in cell culture. Journal of Neuroscience, 3, 1888–1899.
  • Wu, C.F., Ganetzky, B., Jan, L.Y., & Jan, Y.N. (1978). A Drosophila mutant with a temperature-sensitive block in nerve conduction. Proceedings of the National Academy of Sciences USA, 75, 4047–4051.doi: 10.1073/pnas.75.8.4047
  • Wu, L.J., Lu, Y., & Xu, T.L. (2001). A novel mechanical dissociation technique for studying acutely isolated maturing Drosophila central neurons. Journal of Neuroscience Methods, 108, 199–206.doi: 10.1016/S0165-0270(01)00404-6
  • Xu, T.-X., Gong, N., & Xu, T.-L. (2005). Divalent cation modulation of a-type potassium channels in acutely dissociated central neurons from wide-type and mutant Drosophila. Journal of Neurogenetics, 19, 87–107. doi: 10.1080/01677060591007182.
  • Xu, T.-X., Lu, H., Wang, Q., Wu, L.-J., Liu, J., Zhou, Z., & Xu, T.-L. (2002). Properties of whole-cell potassium currents in mechanically dissociated Drosophila larval central neurons. Acta Physiologica Sinica, 54, 411–416.
  • Yao, W.D., & Wu, C.F. (1999). Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons. Journal of Neurophysiology, 81, 2472–2484.doi: 10.2307/20546606
  • Yu, D., Feng, C., & Guo, A. (1999). Altered outward K(+) currents in Drosophila larval neurons of memory mutants rutabaga and amnesiac. Journal of Neurobiology, 40, 158–170.
  • Zhao, M.L., Sable, E.O., Iverson, L.E., & Wu, C.F. (1995). Functional expression of Shaker K+ channels in cultured Drosophila “giant” neurons derived from Sh cDNA transformants: Distinct properties, distribution, and turnover. Journal of Neuroscience, 15, 1406–1418.
  • Zhong, Y., Budnik, V., & Wu, C.F. (1992). Synaptic plasticity in Drosophila memory and hyperexcitable mutants: Role of cAMP cascade. Journal of Neuroscience, 12, 644–651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.