403
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Local translation of the Down syndrome cell adhesion molecule (DSCAM) mRNA in the vertebrate central nervous system

ORCID Icon
Pages 223-230 | Received 06 Sep 2017, Accepted 09 Oct 2017, Published online: 27 Oct 2017

References

  • Agarwala, K.L., Ganesh, S., Amano, K., Suzuki, T., & Yamakawa, K. (2001). DSCAM, a highly conserved gene in mammals, expressed in differentiating mouse brain. Biochemical and Biophysical Research Communications, 281, 697–705. doi: 10.1006/bbrc.2001.4420
  • Alarcon, J.M., Hodgman, R., Theis, M., Huang, Y.S., Kandel, E.R., & Richter, J.D. (2004). Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learning & Memory, 11, 318–327. doi: 10.1101/lm.72704
  • Alves-Sampaio, A., Troca-Marin, J.A., & Montesinos, M.L. (2010). NMDA-mediated regulation of DSCAM dendritic local translation is lost in a mouse model of Down’s syndrome. Journal of Neuroscience, 30, 13537–13548. doi: 10.1523/JNEUROSCI.3457-10.2010
  • Andrade-Talavera, Y., Benito, I., Casañas, J.J., Rodríguez-Moreno, A., & Montesinos, M.L. (2015). Rapamycin restores BDNF-LTP and the persistence of long-term memory in a model of Down’s syndrome. Neurobiology of Disease, 82, 516–525. doi: 10.1016/j.nbd.2015.09.005
  • Antar, L.N., Afroz, R., Dictenberg, J.B., Carroll, R.C., & Bassell, G.J. (2004). Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. Journal of Neuroscience, 24, 2648–2655. doi: 10.1523/JNEUROSCI.0099-04.2004
  • Asrar, S., Meng, Y., Zhou, Z., Todorovski, Z., Huang, W.W., & Jia, Z. (2009). Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology, 56, 73–80. doi: 10.1016/j.neuropharm.2008.06.055
  • Bagni, C., Mannucci, L., Dotti, C.G., & Amaldi, F. (2000). Chemical stimulation of synaptosomes modulates alpha -Ca2+/calmodulin-dependent protein kinase II mRNA association to polysomes. Journal of Neuroscience, 20, RC76.
  • Barlow, G.M., Micales, B., Lyons, G.E., & Korenberg, J.R. (2001). Down syndrome cell adhesion molecule is conserved in mouse and highly expressed in the adult mouse brain. Cytogenetics and Cell Genetics, 94, 155–162. doi: 10.1159/000048808
  • Belichenko, P.V., Kleschevnikov, A.M., Salehi, A., Epstein, C.J., & Mobley, W.C. (2007). Synaptic and cognitive abnormalities in mouse models of Down syndrome: Exploring genotype-phenotype relationships. Journal of Comparative Neurology, 504, 329–345. doi: 10.1002/cne.21433
  • Berger-Sweeney, J., Zearfoss, N.R., & Richter, J.D. (2006). Reduced extinction of hippocampal-dependent memories in CPEB knockout mice. Learning & Memory, 13, 4–7. doi: 10.1101/lm.73706
  • Bestman, J.E., & Cline, H.T. (2008). The RNA binding protein CPEB regulates dendrite morphogenesis and neuronal circuit assembly in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105, 20494–20499. doi: 10.1073/pnas.0806296105
  • Brittis, P.A., Lu, Q., & Flanagan, J.G. (2002). Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell, 110, 223–235. doi: 10.1016/S0092-8674(02)00813-9
  • Brown, V., Jin, P., Ceman, S., Darnell, J.C., O'donnell, W.T., Tenenbaum, S.A., … Warren, S.T. (2001). Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell, 107, 477–487. doi: 10.1016/S0092-8674(01)00568-2
  • Cid-Arregui, A., Parton, R.G., Simons, K., & Dotti, C.G. (1995). Nocodazole-dependent transport, and brefeldin A–sensitive processing and sorting, of newly synthesized membrane proteins in cultured neurons. Journal of Neuroscience, 15, 4259–4269.
  • Colak, D., Ji, S.J., Porse, B.T., & Jaffrey, S.R. (2013). Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay. Cell, 153, 1252–1265. doi: 10.1016/j.cell.2013.04.056
  • Crispino, M., Capano, C.P., Aiello, A., Iannetti, E., Cupello, A., & Giuditta, A. (2001). Messenger RNAs in synaptosomal fractions from rat brain. Brain Research Molecular Brain Research, 97, 171–176. doi: 10.1016/S0169-328X(01)00321-7
  • Delabar, J.M., Theophile, D., Rahmani, Z., Chettouh, Z., Blouin, J.L., Prieur, M., … Sinet, P.M. (1993). Molecular mapping of twenty-four features of Down syndrome on chromosome 21. European Journal of Human Genetics, 1, 114–124.
  • Di Nardo, A.A., Nedelec, S., Trembleau, A., Volovitch, M., Prochiantz, A., & Montesinos, M.L. (2007). Dendritic localization and activity-dependent translation of Engrailed1 transcription factor. Molecular and Cellular Neuroscience, 35, 230–236. doi: 10.1016/j.mcn.2007.02.015
  • Dotti, C.G., & Banker, G. (1991). Intracellular organization of hippocampal neurons during the development of neuronal polarity. Journal of Cell Science, 1991, 75–84. doi: 10.1242/jcs.1991.Supplement_15.11
  • Ferrer, I., & Gullotta, F. (1990). Down's syndrome and Alzheimer's disease: Dendritic spine counts in the hippocampus. Acta Neuropathology, 79, 680–685.
  • Fuerst, P.G., Bruce, F., Rounds, R.P., Erskine, L., & Burgess, R.W. (2012). Cell autonomy of DSCAM function in retinal development. Developmental Biology, 361, 326–337. doi: 10.1016/j.ydbio.2011.10.028
  • Fuerst, P.G., Harris, B.S., Johnson, K.R., & Burgess, R.W. (2010). A novel null allele of mouse DSCAM survives to adulthood on an inbred C3H background with reduced phenotypic variability. Genesis, 48, 578–584. doi: 10.1002/dvg.20662
  • Fuerst, P.G., Koizumi, A., Masland, R.H., & Burgess, R.W. (2008). Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature, 451, 470–474. doi: 10.1038/nature06514
  • Grant, S.G., O'dell, T.J., Karl, K.A., Stein, P.L., Soriano, P., & Kandel, E.R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development in FYN mutant mice. Science, 258, 1903–1910. doi: 10.1126/science.1361685
  • Hanus, C., Geptin, H., Tushev, G., Garg, S., Alvarez-Castelao, B., Sambandan, S., … Schuman, E.M. (2016). Unconventional secretory processing diversifies neuronal ion channel properties. Elife, 5, e20609. doi: 10.7554/eLife.20609
  • Huang, Y.S., Carson, J.H., Barbarese, E., & Richter, J.D. (2003). Facilitation of dendritic mRNA transport by CPEB. Genes Development, 17, 638–653. doi: 10.1101/gad.1053003
  • Huber, K.M., Gallagher, S.M., Warren, S.T., & Bear, M.F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proceeding of the National Academy Sciences of the United Stated America, 99, 7746–7750. doi: 10.1073/pnas.122205699
  • Huber, K.M., Kayser, M.S., & Bear, M.F. (2000). Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science, 288, 1254–1257. doi: 10.1126/science.288.5469.1254
  • Islam, S.M., Shinmyo, Y., Okafuji, T., Su, Y., Naser, I.B., Ahmed, G., … Tanaka, H. (2009). Draxin, a repulsive guidance protein for spinal cord and forebrain commissures. Science, 323, 388–393. doi: 10.1126/science.1165187
  • Ivshina, M., Lasko, P., & Richter, J.D. (2014). Cytoplasmic polyadenylation element binding proteins in development, health, and disease. Annual Review of Cell and Developmental Biology, 30, 393–415. doi: 10.1146/annurev-cellbio-101011-155831
  • Jain, S., & Welshhans, K. (2016). Netrin-1 induces local translation of down syndrome cell adhesion molecule in axonal growth cones. Developmental Neurobiology, 76, 799–816. doi: 10.1002/dneu.22360
  • Kang, H., & Schuman, E.M. (1996). A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science, 273, 1402–1406. doi: 10.1126/science.273.5280.1402
  • Keino-Masu, K., Masu, M., Hinck, L., Leonardo, E.D., Chan, S.S., Culotti, J.G., & Tessier-Lavigne, M. (1996). Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell, 87, 175–185. doi: 10.1016/S0092-8674(00)81336-7
  • Kindler, S., Wang, H., Richter, D., & Tiedge, H. (2005). RNA transport and local control of translation. Annual Review of Cell Developmental Biology, 21, 223–245. doi: 10.1146/annurev.cellbio.21.122303.120653
  • Leung, K.M., van Horck, F.P., Lin, A.C., Allison, R., Standart, N., & Holt, C.E. (2006). Asymmetrical beta-actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nature Neuroscience, 9, 1247–1256. doi: 10.1038/nn1775
  • Li, W., Aurandt, J., Jurgensen, C., Rao, Y., & Guan, K.L. (2006). FAK and Src kinases are required for netrin-induced tyrosine phosphorylation of UNC5. Journal of Cell Science, 119, 47–55. doi: 10.1242/jcs.02697
  • Li, W., & Guan, K.L. (2004). The Down syndrome cell adhesion molecule (DSCAM) interacts with and activates Pak. Journal of Biological Chemistry, 279, 32824–32831. doi: 10.1074/jbc.M401878200
  • Lin, A.C., & Holt, C.E. (2008). Function and regulation of local axonal translation. Current Opinion in Neurobiology, 18, 60–68. doi: 10.1016/j.conb.2008.05.004
  • Liu, G., Li, W., Wang, L., Kar, A., Guan, K.L., Rao, Y., & Wu, J.Y. (2009). DSCAM functions as a netrin receptor in commissural axon pathfinding. Proceedings of the National Academy of Sciences of the United States of America, 106, 2951–2956. doi: 10.1073/pnas.0811083106
  • Ly, A., Nikolaev, A., Suresh, G., Zheng, Y., Tessier-Lavigne, M., & Stein, E. (2008). DSCAM is a netrin receptor that collaborates with DCC in mediating turning responses to netrin-1. Cell, 133, 1241–1254. doi: 10.1016/j.cell.2008.05.030
  • Marin-Padilla, M. (1972). Structural abnormalities of the cerebral cortex in human chromosomal aberrations: A Golgi study. Brain Research, 44, 625–629. doi: 10.1016/0006-8993(72)90324-1
  • Maynard, K.R., & Stein, E. (2012). DSCAM contributes to dendrite arborization and spine formation in the developing cerebral cortex. Journal of Neuroscience, 32, 16637–16650. doi: 10.1523/JNEUROSCI.2811-12.2012
  • McEvoy, M., Cao, G., Llopis, P.M., Kundel, M., Jones, K., Hofler, C., … Wells, D.G. (2007). Cytoplasmic polyadenylation element binding protein 1-mediated mRNA translation in Purkinje neurons is required for cerebellar long-term depression and motor coordination. Journal of Neuroscience, 27, 6400–6411. doi: 10.1523/JNEUROSCI.5211-06.2007
  • Merianda, T.T., Lin, A.C., Lam, J.S.Y., Vuppalanchi, D., Willis, D.E., Karin, N., … Twiss, J.L. (2009). A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Molecular and Cellular Neuroscience, 40, 128–142. doi: 10.1016/j.mcn.2008.09.008
  • Mikhaylova, M., Bera, S., Kobler, O., Frischknecht, R., & Kreutz, M.R. (2016). A dendritic golgi satellite between ERGIC and Retromer. Cell Reports, 14, 189–199. doi: 10.1016/j.celrep.2015.12.024
  • Montesinos, M.L. (2014). Roles for DSCAM and DSCAML1 in central nervous system development and disease. Advances in Neurobiology, 8, 249–270.
  • Nakahata, S., Katsu, Y., Mita, K., Inoue, K., Nagahama, Y., & Yamashita, M. (2001). Biochemical identification of Xenopus pumilio as a sequence-specific cyclin B1 mRNA-binding protein that physically interacts with a Nanos homolog, Xcat-2, and a cytoplasmic polyadenylation element-binding protein. Journal of Biological Chemistry, 276, 20945–20953. doi: 10.1074/jbc.M010528200
  • Napoli, I., Mercaldo, V., Boyl, P.P., Eleuteri, B., Zalfa, F., De Rubeis, S., … Bagni, C. (2008). The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell, 134, 1042–1054. doi: 10.1016/j.cell.2008.07.031
  • Pique, M., Lopez, J.M., Foissac, S., Guigo, R., & Mendez, R. (2008). A combinatorial code for CPE-mediated translational control. Cell, 132, 434–448. doi: 10.1016/j.cell.2007.12.038
  • Purohit, A.A., Li, W., Qu, C., Dwyer, T., Shao, Q., Guan, K.L., & Liu, G. (2012). Down syndrome cell adhesion molecule (DSCAM) associates with uncoordinated-5C (UNC5C) in netrin-1-mediated growth cone collapse. Journal of Biological Chemistry, 287, 27126–27138. doi: 10.1074/jbc.M112.340174
  • Rangaraju, V., Tom Dieck, S., & Schuman, E.M. (2017). Local translation in neuronal compartments: How local is local?. EMBO Reports, 18, 693–711. doi: 10.15252/embr.201744045
  • Rassa, J.C., Wilson, G.M., Brewer, G.A., & Parks, G.D. (2000). Spacing constraints on reinitiation of paramyxovirus transcription: The gene end U tract acts as a spacer to separate gene end from gene start sites. Virology, 274, 438–449. doi: 10.1006/viro.2000.0494
  • Saito, Y., Oka, A., Mizuguchi, M., Motonaga, K., Mori, Y., Becker, L.E., … Takashima, S. (2000). The developmental and aging changes of Down’s syndrome cell adhesion molecule expression in normal and Down’s syndrome brains. Acta Neuropathology, 100, 654–664. doi: 10.1007/s004010000230
  • Schmucker, D., Clemens, J.C., Shu, H., Worby, C.A., Xiao, J., Muda, M., … Zipursky, S.L. (2000). Drosophila DSCAM is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell, 101, 671–684. doi: 10.1016/S0092-8674(00)80878-8
  • Shigeoka, T., Lu, B., & Holt, C.E. (2013). Cell biology in neuroscience: RNA-based mechanisms underlying axon guidance. Journal of Cell Biology, 202, 991–999. doi: 10.1083/jcb.201305139
  • Siarey, R.J., Carlson, E.J., Epstein, C.J., Balbo, A., Rapoport, S.I., & Galdzicki, Z. (1999). Increased synaptic depression in the Ts65Dn mouse, a model for mental retardation in Down syndrome. Neuropharmacology, 38, 1917–1920. doi: 10.1016/S0028-3908(99)00083-0
  • Siarey, R.J., Villar, A.J., Epstein, C.J., & Galdzicki, Z. (2005). Abnormal synaptic plasticity in the Ts1Cje segmental trisomy 16 mouse model of Down syndrome. Neuropharmacology, 49, 122–128. doi: 10.1016/j.neuropharm.2005.02.012
  • Sidorov, M.S., Auerbach, B.D., & Bear, M.F. (2013). Fragile X mental retardation protein and synaptic plasticity. Molecular Brain, 6, 15. doi: 10.1186/1756-6606-6-15
  • Steward, O., Wallace, C.S., Lyford, G.L., & Worley, P.F. (1998). Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron, 21, 741–751. doi: 10.1016/S0896-6273(00)80591-7
  • Steward, O., & Worley, P.F. (2001). Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron, 30, 227–240. doi: 10.1016/S0896-6273(01)00275-6
  • Sung, Y.J., Weiler, I.J., Greenough, W.T., & Denman, R.B. (2004). Selectively enriched mRNAs in rat synaptoneurosomes. Brain Research Molecular Brain Research, 126, 81–87. doi: 10.1016/j.molbrainres.2004.03.013
  • Tang, S.J., Reis, G., Kang, H., Gingras, A.C., Sonenberg, N., & Schuman, E.M. (2002). A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 99, 467–472. doi: 10.1073/pnas.012605299
  • Tcherkezian, J., Brittis, P.A., Thomas, F., Roux, P.P., & Flanagan, J.G. (2010). Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell, 141, 632–644. doi: 10.1016/j.cell.2010.04.008
  • Tongiorgi, E., Righi, M., & Cattaneo, A. (1997). Activity-dependent dendritic targeting of BDNF and TrkB mRNAs in hippocampal neurons. Journal of Neuroscience, 17, 9492–9505.
  • Troca-Marín, J.A., Alves-Sampaio, A., & Montesinos, M.L. (2011). An increase in basal BDNF provokes hyperactivation of the Akt-mammalian target of rapamycin pathway and deregulation of local dendritic translation in a mouse model of Down’s syndrome. Journal of Neuroscience, 31, 9445–9455.
  • Troca-Marín, J.A., Alves-Sampaio, A., & Montesinos, M.L. (2012). Deregulated mTOR-mediated translation in intellectual disability. Progress in Neurobiology, 96, 268–282. doi: 10.1016/j.pneurobio.2012.01.005
  • Troca-Marín, J.A., Alves-Sampaio, A., Tejedor, F.J., & Montesinos, M.L. (2010). Local translation of dendritic RhoA revealed by an improved synaptoneurosome preparation. Molecular and Cellular Neuroscience, 43, 308–314. doi: 10.1016/j.mcn.2009.12.004
  • Troca-Marín, J.A., Casañas, J.J., Benito, I., & Montesinos, M.L. (2014). The Akt-mTOR pathway in Down’s syndrome: The potential use of rapamycin/rapalogs for treating cognitive deficits. CNS & Neurological Disorders-Drug Targets, 13, 34–40. doi: 10.2174/18715273113126660184
  • Vickers, C.A., Dickson, K.S., & Wyllie, D.J. (2005). Induction and maintenance of late-phase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones. Journal of Physiology, 568, 803–813. doi: 10.1113/jphysiol.2005.092924
  • Wu, K.Y., Hengst, U., Cox, L.J., Macosko, E.Z., Jeromin, A., Urquhart, E.R., & Jaffrey, S.R. (2005). Local translation of RhoA regulates growth cone collapse. Nature, 436, 1020–1024. doi: 10.1038/nature03885
  • Yamagata, M., & Sanes, J.R. (2010). Synaptic localization and function of Sidekick recognition molecules require MAGI scaffolding proteins. Journal of Neuroscience, 30, 3579–3588. doi: 10.1523/JNEUROSCI.6319-09.2010
  • Yamakawa, K., Huot, Y.K., Haendelt, M.A., Hubert, R., Chen, X.N., Lyons, G.E., & Korenberg, J.R. (1998). DSCAM: A novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Human Molecular Genetics, 7, 227–237. doi: 10.1093/hmg/7.2.227
  • Zhang, L., Huang, Y., Chen, J.Y., Ding, Y.Q., & Song, N.N. (2015). DSCAM and DSCAML1 regulate the radial migration and callosal projection in developing cerebral cortex. Brain Research, 1594, 61–70. doi: 10.1016/j.brainres.2014.10.060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.