218
Views
2
CrossRef citations to date
0
Altmetric
Original Research Article

The desaturase1 gene affects reproduction before, during and after copulation in Drosophila melanogaster

, , , , , , & show all
Pages 96-115 | Received 31 Jul 2018, Accepted 13 Dec 2018, Published online: 06 Feb 2019

References

  • Acebes, A., Grosjean, Y., Everaerts, C., & Ferveur, J.F. (2004). Cholinergic control of synchronized seminal emissions in Drosophila. Current Biology, 14, 704–710. doi:10.1016/j.cub.2004.04.003
  • Addinsoft. (2012). XLSTAT 2012, Data analysis and statistics with Microsoft Excel. Paris, France: Addinsoft.
  • Balakireva, M., Stocker, R.F., Gendre, N., & Ferveur, J.F. (1998). Voila, a new Drosophila courtship variant that affects the nervous system: Behavioral, neural, and genetic characterization. Journal of Neuroscience, 18, 4335–4343. doi:10.1523/JNEUROSCI.18-11-04335.1998
  • Bastock, M., & Manning, A. (1955). The courtship of Drosophila melanogaster. Behaviour, 8, 85–111. doi:10.1163/156853955X00184
  • Begun, D.J., & Aquadro, C.F. (1993). African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature, 365, 548–550. doi:10.1038/365548a0
  • Bellen, H.J., & Kiger, J.A. (1987). Sexual hyperactivity and reduced longevity of dunce females of Drosophila melanogaster. Genetics, 115, 153–160.
  • Benzer, S. (1973). Genetic dissection of behavior. Scientific American, 229, 24–37. doi:10.1038/scientificamerican1273-24
  • Boll, W., & Noll, M. (2002). The Drosophila Pox neuro gene: Control of male courtship behavior and fertility as revealed by a complete dissection of all enhancers. Development, 129, 5667–5681. doi:10.1242/dev.00157
  • Bousquet, F., Chauvel, I., Flaven-Pouchon, J., Farine, J.-P., & Ferveur, J.-F. (2016). Dietary rescue of altered metabolism gene reveals unexpected Drosophila mating cues. Journal of Lipid Research, 57, 1–11. doi:10.1194/jlr.M064683
  • Bousquet, F., & Ferveur, J.F. (2012). desat1: A Swiss army knife for pheromonal communication and reproduction? Fly, 6, 102–107.
  • Bousquet, F., Nojima, T., Houot, B., Chauvel, I., Chaudy, S., Dupas, S., … Ferveur, J.-F. (2012). Expression of a desaturase gene, desat1, in neural and nonneural tissues separately affects perception and emission of sex pheromones in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 109, 249–254. doi:10.1073/pnas.1109166108
  • Byers, D., Davis, R.L., & Kiger, J.A. (1981). Defect in cyclic AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature, 289, 79–81. doi:10.1038/289079a0
  • Chowdhury, Z.S., Sato, K., & Yamamoto, D. (2017). The core-promoter factor TRF2 mediates a Fruitless action to masculinize neurobehavioral traits in Drosophila. Nature Communications, 8. Article number 1480. doi:10.1038/s41467-017-01623-z
  • Coyne, J.A., & Orr, H.A. (2004). Speciation. Sunderland, MA, USA: Sinauer Associates Inc.
  • Coyne, J.A., Wicker-Thomas, C., & Jallon, J.M. (1999). A gene responsible for a cuticular hydrocarbon polymorphism in Drosophila melanogaster. Genetical Research, 73, 189–203. doi:10.1017/S0016672398003723
  • Cortot, J., Farine, J.-P., Houot, B., Everaerts, C., & Ferveur, J.-F. An experimental study of the factors involved in Drosophila melanogaster incipient speciation. Submitted.
  • Crickmore, M.A., & Vosshall, L.B. (2013). Opposing dopaminergic and GABAergic neurons control the duration and persistence of copulation in Drosophila. Cell, 155, 881–893. doi:10.1016/j.cell.2013.09.055
  • Dierick, H.A., & Greenspan, R.J. (2006). Molecular analysis of flies selected for aggressive behavior. Nature Genetics, 38, 1023–1031. doi:10.1038/ng1864.
  • Doe, C.Q., Chu-LaGraff, Q., Wright, D.M., & Scott, M.P. (1991). The prospero gene specifies cell fates in the Drosophila central nervous system. Cell, 65, 451–464. doi:10.1016/0092-8674(91)90463-9
  • Ejima, A., & Griffith, L.C. (2008). Courtship initiation is stimulated by acoustic signals in Drosophila melanogaster. PLoS One, 3(9), e3246. doi:10.1371/journal.pone.0003246
  • Everaerts, C., Farine, J.P., Cobb, M., & Ferveur, J.F. (2010). Drosophila cuticular hydrocarbons revisited: Mating status alters cuticular profiles. PLoS One, 5, e9607. doi:10.1371/journal.pone.0009607
  • Fang, S., Takahashi, A., & Wu, C.I. (2002). A mutation in the promoter of desaturase 2 is correlated with sexual isolation between drosophila behavioral races. Genetics, 162, 781–784.
  • Fang, S., Ting, C.T., Lee, C.R., Chu, K.H., Wang, C.C., & Tsaur, S.C. (2009). Molecular evolution and functional diversification of fatty acid desaturases after recurrent gene duplication in Drosophila. Molecular Biology and Evolution, 26, 1447–1456. doi:10.1093/molbev/msp057
  • Fedacko, J., Vargova, V., Singh, R.B., De Meester, F., Singh, A.K., Wilson, D., & Dharwadkar, S.M. (2011). Can a high W-6/W-3 fatty acid ratio in the tissues predispose infertility? The Open Nutraceuticals Journal, 4, 156–162. doi:10.2174/1876396001104010156
  • Ferveur, J.F., & Greenspan, R.J. (1998). Courtship behavior of brain mosaics in Drosophila. Journal of Neurogenetics, 12, 205–226.
  • Ferveur, J.-F., Cobb, M., Boukella, H. and J.-M. Jallon (1996). Worldwide variation in Drosophila melanogaster sex pheromone: Behavioral effects, genetic bases and evolutionary consequences. Genetica 97, 73–80.
  • Ferveur, J.F., Savarit, F., Okane, C.J., Sureau, G., Greenspan, R.J., & Jallon, J.M. (1997). Genetic feminization of pheromones and its behavioral consequences in Drosophila males. Science, 276, 1555–1558. doi:10.1126/science.276.5318.1555
  • Ferveur, J.F., Stortkuhl, K.F., Stocker, R.F., & Greenspan, R.J. (1995). Genetic feminization of brain structures and changed sexual orientation in male Drosophila. Science, 267, 902–905. doi:10.1126/science.7846534
  • Ferveur, J.F., & Sureau, G. (1996). Simultaneous influence on male courtship of stimulatory and inhibitory pheromones produced by live sex-mosaic Drosophila melanogaster. Proceedings of the Royal Society Biological Sciences Series B, 263, 967–973. doi:10.1098/rspb.1996.0143
  • Fruttero, L.L., Leyria, J., Ramos, F.O., Stariolo, R., Settembrini, B.P., & Canavoso, L.E. (2017). The process of lipid storage in insect oocytes: The involvement of β-chain of ATP synthase in lipophorin-mediated lipid transfer in the Chagas’ disease vector Panstrongylus megistus (Hemiptera: Reduviidae). Journal of Insect Physiology, 96, 82–92. doi:10.1016/j.jinsphys.2016.10.014
  • Gardner, E.J., & Stott, G.H. (1951). Genes producing a maternal effect and modifiers of tumorous head in “Wild” and tumor bearing stocks of Drosophila melanogaster. Genetics, 36, 72–83.
  • Greenspan, R.J. (1997). A kinder, gentler genetic analysis of behavior: dissection gives way to modulation. Current Opinion in Neurobiology, 7, 805–811. doi:10.1016/S0959-4388(97)80139-0
  • Greenspan, R.J. (2001). Opinion - The flexible genome. Nature Reviews Genetics, 2, 383–387. doi:10.1038/35072018
  • Greenspan, R.J. (2004). Fly Pushing: The theory and practice of Drosophila genetics (2nd ed.). Cold Spring Harbour, New York: Cold Spring Harbour Laboratory Press.
  • Greenspan, R.J., & Ferveur, J.F. (2000). Courtship in Drosophila. Annual Review of Genetics, 34, 205–232.
  • Grillet, M., Everaerts, C., Houot, B., Ritchie, M.G., Cobb, M., & Ferveur, J.F. (2012). Incipient speciation in Drosophila melanogaster involves chemical signals. Scientific Reports, 2, 224. doi:10.1038/srep00224
  • Grillet, M., Ferveur, J.F., & Everaerts, C. (2018). Behavioural elements and sensory cues involved in sexual isolation between Drosophila melanogaster strains. Royal Society Open Science, 5(5):172060. doi:10.1098/rsos.172060
  • Grosjean, Y., Balakireva, M., Dartevelle, L., & Ferveur, J.F. (2001). PGal4 excision reveals the pleiotropic effects of Voila, a Drosophila locus that affects development and courtship behaviour. Genetical Research, 77, 239–250.
  • Gutierrez, E., Wiggins, D., Fielding, B., & Gould, A.P. (2007). Specialized hepatocyte-like cells regulate Drosophila lipid metabolism. Nature, 445, 275–280. doi:10.1038/nature05382
  • Haerty, W., Jallon, J.M., Rouault, J., Bazin, C., & Capy, P. (2002). Reproductive isolation in natural populations of Drosophila melanogaster from Brazzaville (Congo). Genetica, 116, 215–224.
  • Hagstrom, B.E., & Holman, R.T. (1965). Effect of free fatty acids upon fertilization of eggs of sea urchin. Protoplasma, 60, 211–217. doi:10.1007/BF01253000
  • Hall, J.C. (1994). The Mating of a Fly. Science, 264, 1702–1714. doi:10.1126/science.8209251
  • Heimbeck, G., Bugnon, V., Gendre, N., Keller, A., & Stocker, R.F. (2001). A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 98, 15336–15341. doi:10.1073/pnas.011314898
  • Hoback, W.W., Rana, R.L., & Stanley, D.W. (1999). Fatty acid compositions of phospholipids and triacylglycerols of selected tissues, and fatty acid biosynthesis in adult periodical cicadas, Magicicada septendecim. Comparative Biochemistry and Physiology - Part A: Molecular and Integrative Physiology, 122, 355–362. doi:10.1016/S1095-6433(99)00018-5
  • Houot, B., Bousquet, F., & Ferveur, J.F. (2010). The consequences of regulation of desat1 expression for pheromone emission and detection in Drosophila melanogaster. Genetics, 185, 1297–1309. doi:10.1534/genetics.110.117226
  • Houot, B., Cazalé-Debat, L., Fraichard, S., Everaerts, C., Saxena, N., Sane, S.P., & Ferveur, J.-F. (2018). Gene regulation and species-specific evolution of free-flight odor-tracking in Drosophila. Molecular Biology and Evolution, 35, 3–15. doi:10.1093/molbev/msx241
  • Houot, B., Fraichard, S., Greenspan, R.J., & Ferveur, J.F. (2012). Genes involved in sex pheromone discrimination in Drosophila melanogaster and their background-dependent effect. PLoS One, 7, e30799. doi:10.1371/journal.pone.0030799
  • Ito, H., Fujitani, K., Usui, K., Shimizu-Nishikawa, K., Tanaka, S., & Yamamoto, D. (1996). Sexual orientation in Drosophila is altered by the satori mutation in the sex-determination gene fruitless that encodes a zinc finger protein with a BTB domain. Proceedings of the National Academy of Sciences of the USA, 93, 9687–9692. doi:10.1073/pnas.93.18.9687
  • Ito, H., Sato, K., Koganezawa, M., Ote, M., Matsumoto, K., Hama, C., & Yamamoto, D. (2012). Fruitless recruits two antagonistic chromatin factors to establish single-neuron sexual dimorphism. Cell, 149, 1327–1338. doi:10.1016/j.cell.2012.04.025
  • Kankel, D.R., Ferrus, A., Garen, S.H., Harte, P.J., & Lewis, P.E. (1980). The structure and development of the nervous system. In M. Ashburner & T. R. F. Wright (Eds.), The genetics and biology of Drosophila (2nd ed., pp. 295–368). London: Academic Press.
  • Kent, C.F., Daskalchuk, T., Cook, L., Sokolowski, M.B., & Greenspan, R.J. (2009). The Drosophila foraging gene mediates adult plasticity and Gene-Environment Interactions in behaviour, metabolites, and gene expression in response to food deprivation. PLoS Genetics, 5(8), e1000609. doi:10.1371/journal.pgen.1000609
  • Kimura, K., Hachiya, T., Koganezawa, M., Tazawa, T., & Yamamoto, D. (2008). Fruitless and doublesex coordinate to generate male-specific neurons that can initiate courtship. Neuron, 59, 759–769. doi:10.1016/j.neuron.2008.06.007
  • Kimura, K.I., Ote, M., Tazawa, T., & Yamamoto, D. (2005). Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain. Nature, 438, 229–233. doi:10.1038/nature04229
  • Koganezawa, M., Haba, D., Matsuo, T., & Yamamoto, D. (2010). The shaping of male courtship posture by lateralized gustatory inputs to male-specific Interneurons. Current Biology, 20, 1–8. doi:10.1016/j.cub.2009.11.038
  • Koganezawa, M., Kimura, K.I., & Yamamoto, D. (2016). The neural circuitry that functions as a switch for courtship versus aggression in Drosophila males. Current Biology, 26, 1395–1403. doi:10.1016/j.cub.2016.04.017
  • Kohatsu, S., Koganezawa, M., & Yamamoto, D. (2011). Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron, 69, 498–508. doi:10.1016/j.neuron.2010.12.017
  • Korol, A., Rashkovetsky, E., Iliadi, K., Michalak, P., Ronin, Y., & Nevo, E. (2000). Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at ‘Evolution Canyon’. Proceedings of the National Academy of Sciences of the United States of America, 97, 12637–12642.
  • Krstic, D., Boll, W., & Noll, M. (2009). Sensory integration regulating male courtship behavior in Drosophila. PlosOne, 4, e4457. doi:10.1371/journal.pone.0004457
  • Kuniyoshi, H., Baba, K., Ueda, R., Kondo, S., Awano, W., Juni, N., & Yamamoto, D. (2002). Lingerer, a Drosophila gene involved in initiation and termination of copulation, encodes a set of novel cytoplasmic proteins. Genetics, 162, 1775–1789.
  • Kyriacou, C.P., Burnet, B., & Connolly, K. (1978). The behavioural basis of overdominance in competitive mating success at the ebony locus of Drosophila melanogaster. Animal Behaviour, 26, 1195–1206. doi:10.1016/0003-3472
  • Lai, S.L., & Lee, T. (2006). Genetic mosaic with dual binary transcriptional systems in Drosophila. Nature Neuroscience, 9, 703–709. doi:10.1038/nn1681
  • Lasbleiz, C., Ferveur, J.F., & Everaerts, C. (2006). Courtship behaviour of Drosophila melanogaster revisited. Animal Behaviour, 72, 1001–1012. doi:10.1016/j.anbehav.2006.01.027
  • Lee, G., Villella, A., Taylor, B.J., & Hall, J.C. (2001). New reproductive anomalies in fruitless-mutant Drosophila males: Extreme lengthening of mating durations and infertility correlated with defective serotonergic innervation of reproductive organs. Journal of Neurobiology, 47, 121–149. doi:10.1002/neu.1021
  • Lee, T., & Luo, L. (1999). Mosaic analysis with a repressible neurotechnique cell marker for studies of gene function in neuronal morphogenesis. Neuron, 22, 451–461. doi:10.1016/S0896-6273(00)80701-1
  • Lindsley, D.L., & Zimm, G.G. (1992). The genome of Drosophila melanogaster. San Diego, California: Academic Press.
  • MacBean, I.T., & Parsons, P.A. (1967). Directional selection for duration of copulation in Drosophila melanogaster. Genetics, 56, 233–239.
  • Manoli, D.S., & Baker, B.S. (2004). Median bundle neurons coordinate behaviours during Drosophila male courtship. Nature, 430, 564–569. doi: 10.1038/nature02713
  • Marcillac, F., Bousquet, F., Alabouvette, J., Savarit, F., & Ferveur, J.F. (2005). A mutation with major effects on Drosophila melanogaster sex pheromones. Genetics, 171, 1617–1628. doi:10.1534/genetics.104.033159
  • Marcillac, F., Grosjean, Y., & Ferveur, J.F. (2005). A single mutation alters production and discrimination of Drosophila sex pheromones. Proceedings of the Royal Society Biological Sciences Series B, 272, 303–309. doi:10.1098/rspb.2004.2971
  • Markow, T.A. (1987). Behavioral and sensory basis of courtship success in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 84, 6200–6204. doi:10.1073/pnas.84.17.6200
  • Mayr, E. (1950). Isolation, dispersal and evolution. Evolution, 4(4), 363. doi:10.1111/j.1558-5646.1950.tb01410.x
  • Mayr, E. (1963). Animal species and evolution. Cambridge, MA: B. P. o. H. U. Press.
  • Nakano, Y., Fujitani, K., Kurihara, J., Ragan, J., Usui-Aoki, K., Shimoda, L.,… Yamamoto, D. (2001). Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Molecular and Cellular Biology, 21, 3775–3788. doi:10.1128/MCB.21.11.3775-3788.2001
  • Nojima, T., Kimura, K., Koganezawa, M., & Yamamoto, D. (2010). Neuronal synaptic outputs determine the sexual fate of postsynaptic targets. Current Biology, 20, 836–840. doi:10.1016/j.cub.2010.02.064
  • Nottebohm, E., Dambly-Chaudière, C., & Ghysen, A. (1992). Connectivity of chemosensory neurons is controlled by the gene poxn in Drosophila. Nature, 359, 829–832. doi:10.1038/359829a0
  • Paterson, H.E.H. (1985). The recognition concept of species. Species and speciation (pp. 21–29). Pretoria: Transvaal Museum.
  • Petit, C. (1973). Some factors responsible for advantage of rare type in Drosophila melanogaster. Genetics, 74, 221.
  • Pho, D.B., Pennanec'h, M., & Jallon, J.M. (1996). Purification of adult Drosophila melanogaster lipophorin and its role in hydrocarbon transport. Archives of Insect Biochemistry and Physiology, 31, 289–303. doi:10.1002/(SICI)1520-6327(1996)31:3<289::AID-ARCH4>3.0.CO;2-T
  • Pianka, E.R. (1970). On R and K selection. American Naturalist, 104, 592–597. doi:10.1086/282697
  • Ribeiro, I.M.-A., Drews, M., Machacek, C., Borst, A., & Dickson, B.J. (2018). Visal Projection Neurons Mediating Directed Courtship in Drosophila. Cell, 174, 1–15. doi:10.1016/j.cell.2018.06.020
  • Sakurai, A., Koganezawa, M., Yasunaga, K.I., Emoto, K., & Yamamoto, D. (2013). Select interneuron clusters determine female sexual receptivity in Drosophila. Nature Communications, 4, doi:10.1038/ncomms2837
  • Salz, H.K., Davis, R.L., & Kiger, J.A. (1982). Genetic analysis of chromomere 3D4 in Drosophila melanogaster: The dunce and sperm-amotile genes. Genetics, 100, 587–596.
  • Santos, R., Rosas-Oliveira, R., Saraiva, F.B., Majerowicz, D., & Gondim, K.C. (2011). Lipid accumulation and utilization by oocytes and eggs of Rhodnius prolixus. Archives of Insect Biochemistry and Physiology, 77, 1–16. doi:10.1002/arch.20414
  • Sawyer, L.A., Hennessy, J.M., Peixoto, A.A., Rosato, E., Parkinson, H., Costa, R., & Kyriacou, C.P. (1997). Natural variation in a Drosophila clock gene and temperature compensation. Science, 278, 2117–2120. doi:10.1126/science.278.5346.2117
  • Shirangi, T.R., Dufour, H.D., Williams, T.M., & Carroll, S.B. (2009). Rapid evolution of sex pheromone-producing enzyme expression in Drosophila. PLoS Biology, 7(8), e1000168. doi:10.1371/journal.pbio.1000168
  • Sinner, D.I., Kim, G.J., Henderson, G.C., & Igal, R.A. (2012). StearoylCoA desaturase-5: A novel regulator of neuronal cell proliferation and differentiation. PLoS One, 7, doi:10.1371/journal.pone.0039787.
  • Stocker, R.F., Heimbeck, G., Gendre, N., & De Belle, J.S. (1997). Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. Journal of Neurobiology, 32, 443–456. doi:10.1002/(SICI)1097-4695(199705)32:5%3C443::AID-NEU1%3E3.0.CO;2-5
  • Sturtevant, A.H. (1915). Experiments on sex recognition and the problems of sexual selection in Drosophila. Animal Behaviour, 5, 351–366. doi:10.1037/h0074109
  • Suzuki, K., Juni, N., & Yamamoto, D. (1997). Enhanced mate refusal in female Drosophila induced by a mutation in the spinster locus. Applied Entomology and Zoology, 32, 235–243.
  • Takahashi, A., Tsaur, S.C., Coyne, J.A., & Wu, C.I. (2001). The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 98, 3920–3925. doi:10.1073/pnas.061465098
  • Takayanagi, S., Toba, G., Lukacsovich, T., Ote, M., Sato, K., & Yamamoto, D. (2015). A fruitless upstream region that defines the species specificity in the male-specific muscle patterning in Drosophila. Journal of Neurogenetics, 29, 23–29. doi:10.3109/01677063.2014.983101
  • Ting, C.T., Takahashi, A., & Wu, C.I. (2001). Incipient speciation by sexual isolation in Drosophila: Concurrent evolution at multiple loci. Proceedings of the National Academy of Sciences of the United States of America, 98, 6709–6713. doi:10.1073/pnas.121418898
  • Toma, D.P., White, K.P., Hirsch, J., & Greenspan, R.J. (2002). Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nature Genetics, 31, 349–353. doi:10.1038/ng893
  • Usui-Aoki, K., Ito, H., Ui-Tei, K., Takahashi, K., Lukacsovich, T., Awano, W.,… Yamamoto, D. (2000). Formation of the male-specific muscle in female Drosophila by ectopic fruitless expression. Nature Cell Biology, 2, 500–506. doi:10.1038/35019537
  • van der Goes van Naters, W., & Carlson, J.R. (2007). Receptors and neurons for fly odors in Drosophila. Current Biology, 17, 606–612.
  • Vosshall, L.B., & Stocker, R.F. (2007). Molecular architecture of smell and taste in Drosophila. Annual Review of Neuroscience, 30, 505–533. doi:10.1146/annurev.neuro.30.051606.094306
  • Welbergen, P., Spruijt, B.M., & van Dijken, F.R. (1992). Mating speed and the interplay between female and male courtship responses in Drosophila melanogaster (Diptera: Drosophilidae). Journal of Lnsect Behavior, 5, 229–244. doi:10.1007/BF01049291
  • Wu, C.I., Hollocher, H., Begun, D.J., Aquadro, C.F., Xu, Y.J., & Wu, M.L. (1995). Sexual isolation in Drosophila melanogaster - a possible case of incipient speciation. Proceedings of the National Academy of Sciences of the United States of America, 92, 2519–2523. doi:10.1073/pnas.92.7.2519
  • Wyatt, T.D. (2014). Pheromones and animal behavior: chemical signals and signatures (2nd ed.). Cambridge, UK: Cambridge University Press.
  • Yamamoto, D. (2008). Brain sex differences and function of the fruitless gene in Drosophila. Journal of Neurogenetics, 22, 309–322. doi:10.1080/01677060802298491
  • Yamamoto, D., Jallon, J.M., & Komatsu, A. (1997). Genetic dissection of sexual behavior in Drosophila melanogaster. Annual Review of Entomology, 42, 551–585. doi:10.1146/annurev.ento.42.1.551
  • Yanes-Roca, C., Rhody, N., Nystrom, M., & Main, K.L. (2009). Effects of fatty acid composition and spawning season patterns on egg quality and larval survival in common snook (Centropomus undecimalis). Aquaculture, 287, 335–340. doi:10.1016/j.aquaculture.2008.10.043
  • Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S., & Dickson, B.J. (2010). Cellular organization of the neural circuit that drives Drosophila courtship behavior. Current Biology, 20, 1602–1614. doi:10.1016/j.cub.2010.08.025
  • Yukilevich, R., & True, J.R. (2008). Incipient sexual isolation among cosmopolitan Drosophila melanogaster populations. Evolution, 62, 2112–2121. doi:10.1111/j.1558-5646.2008.00427.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.