376
Views
3
CrossRef citations to date
0
Altmetric
Original Research Article

Heritable natural variation of light/dark preference in an outbred zebrafish population

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 199-208 | Received 03 Jun 2019, Accepted 26 Aug 2019, Published online: 22 Sep 2019

References

  • Alsop, D., & Vijayan, M. (2008). Development of the corticosteroid stress axis and receptor expression in zebrafish. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 294, R711–R719. doi:10.1152/ajpregu.00671.2007
  • American Psychiatric Association, DSM-5 Task Force. (2013). Diagnostic and statistical manual of mental disorders: DSM-5™ (5th ed.). Arlington, VA: American Psychiatric Publishing, Inc. doi:10.1176/appi.books.9780890425596
  • Bai, Y., Liu, H., Huang, B., Wagle, M., & Guo, S. (2016). Identification of environmental stressors and validation of light preference as a measure of anxiety in larval zebrafish. BMC Neuroscience, 17, 63–75. doi:10.1186/s12868-016-0298-z
  • Bandelow, B., & Michaelis, S. (2015). Epidemiology of anxiety disorders in the 21st century. Dialogues in Clinical Neuroscience, 17, 327–335.
  • Baxter, A., Scott, K., Vos, T., & Whiteford, H. (2013). Global prevalence of anxiety disorders: A systematic review and meta-regression. Psychological Medicine, 43, 897–910. doi:10.1017/S003329171200147X
  • Bendesky, A., & Bargmann, C. (2011). Genetic contributions to behavioural diversity at the gene–environment interface. Nature Reviews Genetics, 12, 809–820. doi:10.1038/nrg3065
  • Best, C., & Vijayan, M. (2018). Cortisol elevation post-hatch affects behavioural performance in zebrafish larvae. General and Comparative Endocrinology, 257, 220–226. doi:10.1016/j.ygcen.2017.07.009
  • Blaser, R., Chadwick, L., & McGinnis, G. (2010). Behavioral measures of anxiety in zebrafish (Danio rerio). Behavioural Brain Research, 208, 56–62. doi:10.1016/j.bbr.2009.11.009
  • Bretaud, S., Li, Q., Lockwood, B., Kobayashi, K., Lin, E., & Guo, S. (2007). A choice behavior for morphine reveals experience-dependent drug preference and underlying neural substrates in developing larval zebrafish. Neuroscience, 146, 1109–1116. doi:10.1016/j.neuroscience.2006.12.073
  • Brosschot, J., Verkuil, B., & Thayer, J. (2016). The default response to uncertainty and the importance of perceived safety in anxiety and stress: An evolution-theoretical perspective. Journal of Anxiety Disorders, 41, 22–34. doi:10.1016/j.janxdis.2016.04.012
  • Chen, F., Chen, S., Liu, S., Zhang, C., & Peng, G. (2015). Effects of lorazepam and WAY-200070 in larval zebrafish light/dark choice test. Neuropharmacology, 95, 226–233. doi:10.1016/j.neuropharm.2015.03.022
  • Colwill, R., & Creton, R. (2011). Imaging escape and avoidance behavior in zebrafish larvae. Reviews in the Neurosciences, 22, 63–73. doi:10.1515/rns.2011.008
  • Cryan, J., & Sweeney, F. (2011). The age of anxiety: Role of animal models of anxiolytic action in drug discovery. British Journal of Pharmacology, 164, 1129–1161. doi:10.1111/j.1476-5381.2011.01362.x
  • Ding, Y., Berrocal, A., Morita, T., Longden, K., & Stern, D. (2016). Natural courtship song variation caused by an intronic retroelement in an ion channel gene. Nature, 536, 329–332. doi:10.1038/nature19093
  • Drew, R., Settles, M., Churchill, E., Williams, S., Balli, S., & Robison, B. (2012). Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio). BMC Genomics, 13, 323. doi:10.1186/1471-2164-13-323
  • Dunn, E.C., Sofer, T., Gallo, L.C., Gogarten, S.M., Kerr, K.F., Chen, C.-Y., … Smoller, J.W. (2017). Genome-wide association study of generalized anxiety symptoms in the Hispanic Community Health Study/Study of Latinos. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 174, 132–143. doi:10.1002/ajmg.b.32448
  • Egan, R.J., Bergner, C.L., Hart, P.C., Cachat, J.M., Canavello, P.R., Elegante, M.F., … Kalueff, A.V. (2009). Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural Brain Research, 205, 38–44. doi:10.1016/j.bbr.2009.06.022
  • Falconer, D.S., & Mackay, T.F. (1998). Introduction to quantitative genetics (4th ed.). Essex: Longman. ISBN 978-0-582-24302-6.
  • Gerlai, R. (2010). High-throughput behavioral screens: The first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules, 15, 2609–2622. doi:10.3390/molecules15042609
  • Gibbons, J. (1985). Nonparametric statistical inference. New York: M. Dekker.
  • Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., … Stemple, D.L. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature, 496, 498. doi:10.1038/nature12111
  • Kokel, D., Bryan, J., Laggner, C., White, R., Cheung, C., & Mateus, R. (2010). Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nature Chemical Biology, 6, 231–237. doi:10.1038/nchembio.307
  • Larson, G., & Fuller, D. (2014). The evolution of animal domestication. Annual Review Of Ecology, Evolution, and Systematics, 45, 115–136. doi:10.1146/annurev-ecolsys-110512-135813
  • Lau, B., Mathur, P., Gould, G., & Guo, S. (2011). Identification of a brain center whose activity discriminates a choice behavior in zebrafish. Proceedings of the National Academy of Sciences, 108, 2581–2586. doi:10.1073/pnas.1018275108
  • Lieschke, G., & Currie, P. (2007). Animal models of human disease: Zebrafish swim into view. Nature Reviews Genetics, 8, 353–367. doi:10.1038/nrg2091
  • Macho Sanchez-Simon, F., & Rodriguez, R. (2009). Expression of the nociceptin receptor during zebrafish development: Influence of morphine and nociceptin. International Journal of Developmental Neuroscience, 27, 315–320. doi:10.1016/j.ijdevneu.2009.03.008
  • Magno, L., Fontes, A., Gonçalves, B., & Gouveia, A. (2015). Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration. Pharmacology, Biochemistry and Behavior, 135, 169–176. doi:10.1016/j.pbb.2015.05.014
  • Manolio, T., Brooks, L., & Collins, F. (2008). A HapMap harvest of insights into the genetics of common disease. Journal of Clinical Investigation, 118, 1590–1605. doi:10.1172/JCI34772
  • Maximino, C., de Brito, T.M., de Moraes, F.D., de Oliveira, F.V.C., Taccolini, I.B., Pereira, P.M., … Gouveia, A. Jr. (2007). A comparative analysis of the preference for dark environments in five teleosts. International Journal of Comparative Psychology, 20, 351–367. uid: 2009-18155-003
  • Maximino, C., da Silva, A., Gouveia, A., & Herculano, A. (2011). Pharmacological analysis of zebrafish (Danio rerio) scototaxis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35, 624–631. doi:10.1016/j.pnpbp.2011.01.006
  • Maximino, C., de Brito, T.M., Colmanetti, R., Pontes, A.A.A., de Castro, H.M., de Lacerda, R.I.T., … Gouveia, A. (2010). Parametric analyses of anxiety in zebrafish scototaxis. Behavioural Brain Research, 210, 1–7. doi:10.1016/j.bbr.2010.01.031
  • Maximino, C., de Brito, T.M., Dias, C., Gouveia, A., & Morato, S. (2010). Scototaxis as anxiety-like behavior in fish. Nature Protocols, 5, 209–216. doi:10.1038/nprot.2009.225
  • Mueller, T., Dong, Z., Berberoglu, M., & Guo, S. (2011). The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Research, 1381, 95–105. doi:10.1016/j.brainres.2010.12.089
  • Oswald, M., & Robinson, B. (2008). Strain-specific alteration of zebrafish feeding behavior in response to aversive stimuli. Canadian Journal of Zoology, 86, 1085–1094. doi:10.1139/Z08-085
  • Otowa, T., Hek, K., Lee, M., Byrne, E.M., Mirza, S.S., Nivard, M.G., … Hettema, J.M. (2016). Meta-analysis of genome-wide association studies of anxiety disorders. Molecular Psychiatry, 21, 1391. doi:10.1038/mp.2015.197
  • Parker, C.C., Gopalakrishnan, S., Carbonetto, P., Gonzales, N.M., Leung, E., Park, Y.J., … Palmer, A.A. (2016). Genome-wide association study of behavioral, physiological and gene expression traits in outbred CFW mice. Nature Genetics, 48, 919–926. doi:10.1038/ng.3609
  • Parmar, A., Parmar, M., & Brennan, C.H. (2011) Zebrafish conditioned place preference models of drug reinforcement and relapse to drug seeking. In: Kalueff A., Cachat J. (eds) Zebrafish neurobehavioral protocols (vol 51, pp.75–84). New York: Humana Press. doi:10.1007/978-1-60761-953-6_6
  • Rinkwitz, S., Mourrain, P., & Becker, T. (2011). Zebrafish: An integrative system for neurogenomics and neurosciences. Progress in Neurobiology, 93, 231–243. doi:10.1016/j.pneurobio.2010.11.003
  • Rink, E., & Wullimann, M. (2001). The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Research, 889, 316–330. doi:10.1016/S0006-8993(00)03174-7
  • Rink, E., & Wullimann, M. (2002). Connections of the ventral telencephalon and tyrosine hydroxylase distribution in the zebrafish brain (Danio rerio) lead to identification of an ascending dopaminergic system in a teleost. Brain Research Bulletin, 57, 385–387. doi:10.1016/S0361-9230(01)00696-7
  • Rüppell, O., Pankiw, T., & Page, R. (2004). Pleiotropy, epistasis and new QTL: The genetic architecture of honey bee foraging behavior. Journal of Heredity, 95, 481–491. doi:10.1093/jhered/esh072
  • Schnörr, S., Steenbergen, P., Richardson, M., & Champagne, D. (2012). Measuring thigmotaxis in larval zebrafish. Behavioural Brain Research, 228, 367–374. doi:10.1016/j.bbr.2011.12.016
  • Serra, E., Medalha, C., & Mattioli, R. (1999). Natural preference of zebrafish (Danio rerio) for a dark environment. Brazilian Journal of Medical and Biological Research, 32, 1551–1553. doi:10.1590/S0100-879X1999001200016
  • Steenbergen, P., Richardson, M., & Champagne, D. (2011). Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: A pharmacological study. Behavioural Brain Research, 222, 15–25. doi:10.1016/j.bbr.2011.03.025
  • Stewart, A., et al. (2011) Neurophenotyping of adult zebrafish using the light/dark box paradigm. In: Kalueff A., Cachat J. (eds) Zebrafish neurobehavioral protocols (vol 51, pp. 157–167). New York: Humana Press. doi:10.1007/978-1-60761-953-6_13
  • Strawbridge, R.J., Ward, J., Cullen, B., Tunbridge, E.M., Hartz, S., Bierut, L., … Smith, D.J. (2018). Genome-wide analysis of self-reported risk-taking behaviour and cross-disorder genetic correlations in the UK Biobank cohort. Translational Psychiatry, 8, 39. doi:10.1038/s41398-017-0079-1
  • Wagle, M., Nguyen, J., Lee, S., Zaitlen, N., & Guo, S. (2017). Heritable natural variation of an anxiety-like behavior in larval zebrafish. Journal of Neurogenetics, 31, 138–148. doi:10.1080/01677063.2017.1343827
  • Wong, R., Perrin, F., Oxendine, S., Kezios, Z.D., Sawyer, S., Zhou, L., … Godwin, J. (2012). Comparing behavioral responses across multiple assays of stress and anxiety in zebrafish (Danio rerio). Behaviour, 149, 1205–1240. doi:10.2307/41720611
  • Wullimann, M., & Mueller, T. (2004). Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. The Journal of Comparative Neurology, 475, 143–162. doi:10.1002/cne.20183

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.