288
Views
0
CrossRef citations to date
0
Altmetric
Original Research Articles

Importin-α2 mediates brain development, learning and memory consolidation in Drosophila

, , , , , , & show all
Pages 69-82 | Received 14 Sep 2019, Accepted 22 Dec 2019, Published online: 22 Jan 2020

References

  • Abramoff, M.D., Magelhaes, P.J., & Ram, S. (2004). Image processing with ImageJ. Biophotonics International, 11, 36–42.
  • Ahn, H.J., Hernandez, C.M., Levenson, J.M., Lubin, F.D., Liou, H.C., & Sweatt, J.D. (2008). c-Rel, an NF-kappaB family transcription factor, is required for hippocampal long-term synaptic plasticity and memory formation. Learning & Memory, 15, 539–549. doi:10.1101/lm.866408
  • Akalal, D.B., Yu, D., & Davis, R.L. (2011). The long-term memory trace formed in the Drosophila α/β mushroom body neurons is abolished in long-term memory mutants. The Journal of Neuroscience, 31, 5643–5647. doi:10.1523/JNEUROSCI.3190-10.2011
  • Akhtar, A., & Gasser, S.M. (2007). The nuclear envelope and transcriptional control. Nature Reviews Genetics, 8, 507–517. doi:10.1038/nrg2122
  • Alberini, C.M. (2009). Transcription factors in long term memory and synaptic plasticity. Physiological Reviews, 89, 121–145. doi:10.1152/physrev.00017.2008
  • Araya, G.H., Magwire, M.M., Huang, W., Serrano-Negron, Y.L., Mackay, T.F.C., & Anholt, R.R.H. (2015). The genetic basis for variation in olfactory behavior in Drosophila melanogaster. Chemical Senses, 40, 233–243. doi:10.1093/chemse/bjv001
  • Armstrong, J.D., de Belle, J.S., Wang, Z., & Kaiser, K. (1998). Metamorphosis of the mushroom bodies; large-scale rearrangements of the neural substrates for associative learning and memory in Drosophila . Learning & Memory, 5, 102–114.
  • Asaoka, M., Hanyu-Nakamura, K., Nakamura, A., & Kobayashi, S. (2019). Maternal Nanos inhibits Importin-α2/Pendulin-dependent nuclear import to prevent somatic gene expression in the Drosophila germline. PLOS Genetics, 15, e1008090. doi:10.1371/journal.pgen.1008090
  • Bailey, C.H., & Kandel, E.R. (1994). Structural changes underlying long-term memory storage in Aplysia: A molecular perspective. Sem Neurosci, 6, 35–44. doi:10.1006/smns.1994.1005
  • Baker, S.E., Lorenzen, J.A., Miller, S.W., Bunch, T.A., Jannuzi, A.L., Ginsberg, M.H., … Brower, D.L. (2002). Genetic interaction between integrins and moleskin, a gene encoding a Drosophila homolog of importin-7. Genetics, 162, 285–296.
  • Behnisch, T., YuanXiang, P., Bethge, P., Parvez, S., Chen, Y., Yu, J., … Kreutz, M.R. (2011). Nuclear translocation of Jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression. PLoS ONE, 6, e17276. doi:10.1371/journal.pone.0017276
  • Behrens, P., Brinkmann, U., & Wellmann, A. (2003). CSE1L/CAS: Its role in proliferation and apoptosis. Apoptosis, 8, 39–44. doi:10.1023/a:1021644918117
  • Blum, A.L., Li, W., Cressy, M., & Dubnau, J. (2009). Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Current Biology, 19, 1341–1350. doi:10.1016/j.cub.2009.07.016
  • Blumröder, R., Glunz, A., Dunkelberger, B.S., Serway, C.N., Berger, C., Mentzel, B., … Raabe, T. (2016). Mcm3 replicative helicase mutation impairs neuroblast proliferation and memory in Drosophila. Genes, Brain and Behavior, 15, 647–659. doi:10.1111/gbb.12304
  • Boquet, I., Hitier, R., Dumas, M., Chaminade, M., & Préat, T. (2000). Central brain postembryonic development in Drosophila: Implication of genes expressed at the interhemispheric junction. Journal of Neurobiology, 42, 33–48. doi:10.1002/(SICI)1097-4695(200001)42:1<33::AID-NEU4>3.0.CO;2-T
  • Bosveld, F., Ainslie, A., & Bellaïche, Y. (2017). Sequential activities of Dynein, Mud and Asp in centrosome-spindle coupling maintain centrosome number upon mitosis. Journal of Cell Science, 130, 3557–3567. doi:10.1242/jcs.201350
  • Brand, A.H., & Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development, 118, 401–415.
  • Busto, G.U., Cervantes-Sandoval, I., & Davis, R.L. (2010). Olfactory learning in Drosophila. Physiology (Bethesda), 25, 338–346. doi:10.1152/physiol.00026.2010
  • Ch’ng, T.H., DeSalvo, M., Lin, P., Vashisht, A., Wohlschlegel, J.A., & Martin, K.C. (2015). Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons. Frontiers in Molecular Neuroscience, 8, 48.
  • Chen, J.W., Barker, A.R., & Wakefield, J.G. (2015). The Ran pathway in Drosophila melanogaster mitosis. Frontiers in Cell and Developmental Biology, 3, 74. doi:10.3389/fcell.2015.00074
  • Chen, C.C., Wu, J.K., Lin, H.W., Pai, T.P., Fu, T.F., Wu, C.L., … Chiang, A.S. (2012). Visualizing long-term memory formation in two neurons of the Drosophila brain. Science, 335, 678–685. doi:10.1126/science.1212735
  • Cognigni, P., Felsenberg, J., & Waddell, S. (2018). Do the right thing: Neural network mechanisms of memory formation, expression and update in Drosophila. Current Opinion in Neurobiology, 49, 51–58. doi:10.1016/j.conb.2017.12.002
  • Cox, L.J., Hengst, U., Gurskaya, N.G., Lukyanov, K.A., & Jaffrey, S.R. (2008). Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nature Cell Biology, 10, 149–159. doi:10.1038/ncb1677
  • Crittenden, J.R., Skoulakis, E.M.C., Han, K., Kalderon, D., & Davis, R.L. (1998). Tripartite mushroom body architecture revealed by antigenic markers. Learning & Memory, 5, 38–51.
  • Dasso, M. (2001). Running on Ran: Nuclear transport and the mitotic spindle. Cell, 104, 321–324. doi:10.1016/S0092-8674(01)00218-5
  • de Belle, J.S., & Heisenberg, M. (1994). Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science, 263, 692–695. doi:10.1126/science.8303280
  • de Belle, J.S., & Heisenberg, M. (1996). Expression of Drosophila mushroom body mutations in alternative genetic backgrounds: A case study of the mushroom body miniature gene (mbm). Proceedings of the National Academy of Sciences of the United States of America, 93, 9875–9880. doi:10.1073/pnas.93.18.9875
  • de Belle, J.S., & Kanzaki, R. (1999). Protocerebral olfactory processing. In B. S. Hansson (Ed.), Insect Olfaction (pp. 243–281). Stuttgart: Springer Verlag.
  • Demerec, M. (1950). Biology of Drosophila. New York: John Wiley & Sons.
  • Dubnau, J., & Chiang, A. S. (2013). Systems memory consolidation in Drosophila. Curr Opin Neurobiol, 23(1), 84–91.
  • DeZazzo, J., & Tully, T. (1995). Dissection of memory formation: From behavioral pharmacology to molecular genetics. Trends in Neurosciences, 18, 212–218. doi:10.1016/0166-2236(95)93905-D
  • Dias, S.M., Cerione, R.A., & Wilson, K.F. (2010). Unloading RNAs in the cytoplasm: An “importin” task. Nucleus, 1, 139–143. doi:10.4161/nucl.1.2.10919
  • Dunkelberger, B.M. (2008). The effects of mushroom body lobe disruption on learning and memory (Doctoral dissertation). Las Vegas: University of Nevada.
  • Frank, D.A., & Greenberg, M.E. (1994). CREB: A mediator of long-term memory from mollusks to mammals. Cell, 79, 5–8. doi:10.1016/0092-8674(94)90394-8
  • Gerber, B., Tanimoto, H., & Heisenberg, M. (2004). An engram found? Evaluating the evidence from fruit flies. Current Opinion in Neurobiology, 14, 737–744. doi:10.1016/j.conb.2004.10.014
  • Giarrè, M., Török, I., Schmitt, R., Gorjánácz, M., Kiss, I., & Mechler, B.M. (2002). Patterns of importin-alpha expression during Drosophila spermatogenesis. Journal of Structural Biology, 140, 279–290. doi:10.1016/S1047-8477(02)00543-9
  • Ginsburg, M.L. (2002). Characterization of the pleiotropic effects of the Drosophila gene mushroom body miniature B (Master's thesis). Las Vegas: University of Nevada.
  • Gorjánácz, M., Ádám, G., Török, I., Mechler, B.M., Szlanka, T., & Kiss, I. (2002). Importin-α2 is critically required for the assembly of ring canals during Drosophila oogenesis. Developmental Biology, 217, 271–282. doi:10.1006/dbio.2002.0827
  • Gorjánácz, M., Török, I., Pomozi, I., Garab, G., Szlanka, T., Kiss, I., & Mechler, B.M. (2006). Domains of importin-α2 required for ring canal assembly during Drosophila oogenesis. Journal of Structural Biology, 154, 27–41. doi:10.1016/j.jsb.2005.12.007
  • Guven-Ozkan, T., & Davis, R.L. (2014). Functional neuroanatomy of Drosophila olfactory memory formation. Learning & Memory, 21, 519–526. doi:10.1101/lm.034363.114
  • Hanz, S., & Fainzilber, M. (2006). Retrograde signaling in injured nerve – the axon reaction revisited. Journal of Neurochemistry, 99, 13–19. doi:10.1111/j.1471-4159.2006.04089.x
  • Hawk, J.D., & Abel, T. (2011). The role of NR4A transcription factors in memory formation. Brain Research Bulletin, 85, 21–29. doi:10.1016/j.brainresbull.2011.02.001
  • Heisenberg, M. (1980). Mutants of brain structure and function: What is the significance of the mushroom bodies for behavior? In O. Siddiqi, P. Babu, L. M. Hall, & J. C. Hall (Eds.), Development and Neurobiology of Drosophila (pp. 373–390). New York: Plenum.
  • Heisenberg, M. (1989). Neuronal plasticity and brain function. In H. Rahmann (Ed.), Fundamentals of Memory Formation (pp. 3–45). Stuttgart: Fischer.
  • Heisenberg, M. (2003). Mushroom body memoir: From maps to models. Nature Reviews Neuroscience, 4, 266–275. doi:10.1038/nrn1074
  • Heisenberg, M., & Böhl, K. (1979). Isolation of anatomical brain mutants of Drosophila by histological means. Zeitschrift für Naturforschung C, 34, 143–147. doi:10.1515/znc-1979-1-228
  • Heisenberg, M., Borst, A., Wagner, S., & Byers, D. (1985). Drosophila mushroom body mutants are deficient in olfactory learning. Journal of Neurogenetics, 2, 1–30. doi:10.3109/01677068509100140
  • Heisenberg, M., Heusipp, M., & Wanke, C. (1995). Structural plasticity in the Drosophila brain. The Journal of Neuroscience, 15, 1951–1960. doi:10.1523/JNEUROSCI.15-03-01951.1995
  • Homem, C.C., & Knoblich, J.A. (2012). Drosophila neuroblasts: A model for stem cell biology. Development, 139, 4297–4310. doi:10.1242/dev.080515
  • Hood, J.K., & Silver, P.A. (1998). Cse1p is required for export of Srp1p/importin-alpha from the nucleus in Saccharomyces cerevisiae. Journal of Biological Chemistry, 273, 35142–35146. doi:10.1074/jbc.273.52.35142
  • Horiuchi, J., Jiang, W., Zhou, H., Wu, P., & Yin, J.C. (2004). Phosphorylation of conserved casein kinase sites regulates cAMP-response element-binding protein DNA binding in Drosophila. Journal of Biological Chemistry, 279, 12117–12125. doi:10.1074/jbc.M212839200
  • Hovhanyan, A., Herter, E.K., Pfannstiel, J., Gallant, P., & Raabe, T. (2014). Drosophila mbm is a nucleolar myc and casein kinase 2 target required for ribosome biogenesis and cell growth of central brain neuroblasts. Molecular and Cellular Biology, 34, 1878–1891. doi:10.1128/MCB.00658-13
  • Hovhanyan, A., & Raabe, T. (2009). Structural brain mutants: Mushroom body defect (mud): A case study. Journal of Neurogenetics, 23, 42–47. doi:10.1080/01677060802471700
  • Isabel, G., Pascual, A., & Préat, T. (2004). Exclusive consolidated memory phases in Drosophila. Science, 304, 1024–1027. doi:10.1126/science.1094932
  • Ito, K., Awano, W., Suzuki, K., Hiromi, Y., & Yamamoto, D. (1997). The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development, 124, 761–771.
  • Ito, K., & Hotta, Y. (1992). Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Developmental Biology, 149, 134–148. doi:10.1016/0012-1606(92)90270-Q
  • Jacob, P.F., & Waddell, S. (2019). Spaced training forms complementary long-term memories of opposite valence in Drosophila. bioRxiv, 785618. doi:10.1101/785618
  • Jang, A.R., Moravcevic, K., Saez, L., Young, M.W., & Sehgal, A. (2015). Drosophila TIM binds Importin α1, and acts as an adapter to transport PER to the nucleus. PLOS Genetics, 11, e1004974. doi:10.1371/journal.pgen.1004974
  • Jeffrey, R.A., Ch’ng, T.H., O'Dell, T.J., & Martin, K.C. (2009). Activity-dependent anchoring of importin alpha at the synapse involves regulated binding to the cytoplasmic tail of the NR1-1a subunit of the NMDA receptor. The Journal of Neuroscience, 29, 15613–15620. doi:10.1523/JNEUROSCI.3314-09.2009
  • Jordan, B.A., & Kreutz, M.R. (2009). Nucleocytoplasmic protein shuttling: The direct route in synapse-to-nucleus signaling. Trends in Neurosciences, 32, 392–401. doi:10.1016/j.tins.2009.04.001
  • Kahsai, L., & Zars, T. (2011). Learning and memory in Drosophila: Behavior, genetics, and neural systems. International Review of Neurobiology, 99, 139–167. doi:10.1016/B978-0-12-387003-2.00006-9
  • Kim, I., Kim, D., Han, S.M., Chin, M.U., Nam, H.J., Cho, H.P., … Moon, Y.H. (2000). Truncated form of Importin α 2 identified in breast cancer cell inhibits nuclear import of p53. Journal of Biological Chemistry, 275, 23139–23145. doi:10.1074/jbc.M909256199
  • Kogan, J.H., Frankland, P.W., Blendy, J.A., Coblentz, J., Marowitz, Z., Schütz, G., & Silva, A.J. (1997). Spaced training induces normal long-term memory in CREB mutant mice. Current Biology, 7, 1–11. doi:10.1016/S0960-9822(06)00022-4
  • Korwek, Z., Tudelska, K., Nałęcz-Jawecki, P., Czerkies, M., Prus, W., Markiewicz, J., … Lipniacki, T. (2016). Importins promote high-frequency NF-κB oscillations increasing information channel capacity. Biology Direct, 11, 61. doi:10.1186/s13062-016-0164-z
  • Krashes, M.J., Keene, A.C., Leung, B., Armstrong, J.D., & Waddell, S. (2007). Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron, 53, 103–115. doi:10.1016/j.neuron.2006.11.021
  • Kumar, J.P., Wilkie, G.S., Tekotte, H., Moses, K., & Davis, I. (2001). Perturbing nuclear transport in Drosophila eye imaginal discs causes specific cell adhesion and axon guidance defects. Developmental Biology, 240, 315–325. doi:10.1006/dbio.2001.0468
  • Kurusu, M., Maruyama, Y., Adachi, Y., Okabe, M., Suzuki, E., & Furukubo-Tokunaga, K. (2009). A conserved nuclear receptor, Tailless, is required for efficient proliferation and prolonged maintenance of mushroom body progenitors in the Drosophila brain. Developmental Biology, 326, 224–236. doi:10.1016/j.ydbio.2008.11.013
  • Kutay, U., Bischoff, F.R., Kostka, S., Kraft, R., & Görlich, D. (1997). Export of Importin α from the nucleus is mediated by a specific nuclear transport factor. Cell, 90, 1061–1071. doi:10.1016/S0092-8674(00)80372-4
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685. doi:10.1038/227680a0
  • Lagasse, F., Moreno, C., Préat, T., & Mery, F. (2012). Functional and evolutionary trade-offs co-occur between two consolidated memory phases in Drosophila melanogaster. Proceedings of the Royal Society - Biological Sciences, 279, 4015–4023. doi:10.1098/rspb.2012.1457
  • Lai, K.O., Zhao, Y., Ch’ng, T.H., & Martin, K.C. (2008). Importin-mediated retrograde transport of CREB2 from distal processes to the nucleus in neurons. Proceedings of the National Academy of Sciences of the United States of America, 105, 17175–17180. doi:10.1073/pnas.0803906105
  • Lee, Y., Jang, A.R., Francey, L.J., Sehgal, A., & Hogenesch, J.B. (2015). KPNB1 mediates PER/CRY nuclear translocation and circadian clock function. Elife, 4, e08647. doi:10.7554/eLife.08647
  • Lee, T., Lee, A., & Luo, L. (1999). Development of the Drosophila mushroom bodies: Sequential generation of three distinct types of neurons from a neuroblast. Development, 126, 4065–4076.
  • Li, Q., Zhang, X., Hu, W., Liang, X., Zhang, F., Wang, L., … Zhong, Y. (2016). Importin-7 mediates memory consolidation through regulation of nuclear translocation of training-activated MAPK in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 113, 3072–3077. doi:10.1073/pnas.1520401113
  • Liu, Z., Steward, R., & Luo, L. (2000). Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nature Cell Biology, 2, 776–783. doi:10.1038/35041011
  • Mason, D.A., Fleming, R.J., & Goldfarb, D.S. (2002). Drosophila melanogaster importin alpha1 and alpha3 can replace importin alpha2 during spermatogenesis but not oogenesis. Genetics, 161, 157–170.
  • McBride, K.M., Banninger, G., McDonald, C., & Reich, N.C. (2002). Regulated nuclear import of the STAT1 transcription factor by direct binding of importin-alpha. Embo J, 21, 1754–1763. doi:10.1093/emboj/21.7.1754
  • McBride, S.M., Choi, C.H., Wang, Y., Liebelt, D., Braunstein, E., Ferreiro, D., … Jongens, T.A. (2005). Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron, 45, 753–764. doi:10.1016/j.neuron.2005.01.038
  • Michel, C.K., Kraft, R., & Restifo, L.L. (2004). Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants. The Journal of Neuroscience, 24, 5798–5809. doi:10.1523/JNEUROSCI.1102-04.2004
  • Middeler, G., Zerf, K., Jenovai, S., Thulig, A., Tschödrich-Rotter, M., Kubitscheck, U., & Peters, R. (1997). The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-dependent and lectin-inhibited. Oncogene, 14, 1407–1417. doi:10.1038/sj.onc.1200949
  • Moreau-Fauvarque, C., Taillebourg, E., Boissoneau, E., Mesnard, J., & Dura, J.M. (1998). The receptor tyrosine kinase gene linotte is required for neuronal pathway selection in the Drosophila mushroom bodies. Mechanisms of Development, 78, 47–61. doi:10.1016/S0925-4773(98)00147-6
  • Moreau-Fauvarque, C., Taillebourg, E., Préat, T., & Dura, J.-M. (2002). Mutation of linotte causes behavioral defects independently of pigeon in Drosophila. Neuroreport, 13, 2309–2312. doi:10.1097/00001756-200212030-00028
  • Mosca, T.J., & Schwarz, T.L. (2010a). Drosophila Importin-α2 is involved in synapse, axon and muscle development. PLoS ONE, 5, e15223. doi:10.1371/journal.pone.0015223
  • Mosca, T.J., & Schwarz, T.L. (2010b). The nuclear import of Frizzled2-C by Importins-beta11 and alpha2 promotes postsynaptic development. Nature Neuroscience, 13, 935–943. doi:10.1038/nn.2593
  • Oka, M., & Yoneda, Y. (2018). Importin α: Functions as a nuclear transport factor and beyond. Proceedings of the Japan Academy, Series B, Physical and Biological Sciences, 94, 259–274. doi:10.2183/pjab.94.018
  • Pai, T.P., Chen, C.C., Lin, H.H., Chin, A.L., Lai, J.S., Lee, P.T., … Chiang, A.S. (2013). Drosophila ORB protein in two mushroom body output neurons is necessary for long-term memory formation. Proceedings of the National Academy of Sciences of the United States of America, 110, 7898–7903. doi:10.1073/pnas.1216336110
  • Pascual, A., & Préat, T. (2001). Localization of long-term memory within the Drosophila mushroom body. Science, 294, 1115–1117. doi:10.1126/science.1064200
  • Pavlopoulos, E., Anezaki, M., & Skoulakis, E.M. (2008). Neuralized is expressed in the alpha/beta lobes of adult Drosophila mushroom bodies and facilitates olfactory long-term memory formation. Proceedings of the National Academy of Sciences of the United States of America, 105, 14674–14679. doi:10.1073/pnas.0801605105
  • Perry, R.B., & Fainzilber, M. (2009). Nuclear transport factors in neuronal function. Seminars in Cell and Developmental Biology, 20, 600–606. doi:10.1016/j.semcdb.2009.04.014
  • Phadnis, N., Hsieh, E., & Malik, H.S. (2012). Birth, death, and replacement of karyopherins in Drosophila. Molecular Biology and Evolution, 29, 1429–1440. doi:10.1093/molbev/msr306
  • Plaçais, P.Y., Trannoy, S., Isabel, G., Aso, Y., Siwanowicz, I., Belliart-Guérin, G., … Préat, T. (2012). Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila. Nature Neuroscience, 15, 592–599. doi:10.1038/nn.3055
  • Presente, A., Boyles, R.S., Serway, C.N., de Belle, J.S., & Andres, A.J. (2004). Notch is required for long-term memory in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 101, 1764–1768. doi:10.1073/pnas.0308259100
  • Pumroy, R.A., & Cingolani, G. (2015). Diversification of importin-α isoforms in cellular trafficking and disease states. Biochemical Journal, 466, 13–28. doi:10.1042/BJ20141186
  • Qin, H., Cressy, M., Li, W., Coravos, J.S., Izzi, S.A., & Dubnau, J. (2012). Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila. Current Biology, 22, 608–614. doi:10.1016/j.cub.2012.02.014
  • Renn, S.C., Armstrong, J.D., Yang, M., Wang, Z., An, X., Kaiser, K., & Taghert, P.H. (1999). Genetic analysis of the Drosophila ellipsoid body neuropil: Organization and development of the central complex. Journal of Neurobiology, 41, 189–207. doi:10.1002/(SICI)1097-4695(19991105)41:2<189::AID-NEU3>3.0.CO;2-Q
  • Reuter, J.E., Nardine, T.M., Penton, A., Billuart, P., Scott, E.K., Usui, T., Uemura, T., & … Uo, L. (2003). A mosaic genetic screen for genes necessary for Drosophila mushroom body neuronal morphogenesis. Development, 130, 1203–1213. doi:10.1242/dev.00319
  • Ricker, J.P., & Hirsch, J. (1985). Evolution of an instinct under long-term divergent selection for geotaxis in domesticated populations of Drosophila melanogaster. Journal of Comparative Psychology, 99, 380–390. doi:10.1037//0735-7036.99.4.380
  • Rokia-Mille, B.S., Tinette, S., Engler, G., Arthaud, L., Tares, S., & Robichon, A. (2008). Continued neurogenesis in adult Drosophila as a mechanism for recruiting environmental cue-dependent variants. PLoS ONE, 3, e2395. doi:10.1371/journal.pone.0002395
  • Sachan, N., Mishra, A.K., Mutsuddi, M., & Mukherjee, A. (2013). The Drosophila Importin-α3 is required for nuclear import of notch in vivo and it displays synergistic effects with notch receptor on cell proliferation. PLoS ONE, 8, e68247. doi:10.1371/journal.pone.0068247
  • Séjourné, J., Plaçais, P.Y., Aso, Y., Siwanowicz, I., Trannoy, S., Thoma, V., … Préat, T. (2011). Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nature Neuroscience, 14, 903–910. doi:10.1038/nn.2846
  • Serway, C.N. (2010). Genes involved in mushroom body development and behavior in Drosophila (Doctoral dissertation). Las Vegas: University of Nevada.
  • Serway, C.N., Kaufman, R.R., Strauss, R., & Steven de Belle, J. (2009). Mushroom bodies enhance initial motor activity in Drosophila. Journal of Neurogenetics, 23, 173–184. doi:10.1080/01677060802572895
  • Siller, H.Q., & Doe, C.Q. (2009). Spindle orientation during asymmetric cell division. Nature Cell Biology, 11, 365–374. doi:10.1038/ncb0409-365
  • Solomon, D.A., Stepto, A., Au, W.H., Adachi, Y., Diaper, D.C., Hall, R., … Hirth, F. (2018). A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-α mediates C9orf72-related neurodegeneration. Brain, 141, 2908–2924. doi:10.1093/brain/awy241
  • Sousa-Nunes, R., & Somers, W.G. (2013). Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. Advances in Experimental Medicine and Biology, 786, 79–102. doi:10.1007/978-94-007-6621-1
  • Tabone, C.J., & de Belle, J.S. (2011). Second-order conditioning in Drosophila. Learning & Memory, 18, 250–253. doi:10.1101/lm.2035411
  • Takemura, S.Y., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C.S., … Scheffer, L.K. (2017). A connectome of a learning and memory center in the adult Drosophila brain. Elife, 6, e26975. doi:10.7554/eLife.26975
  • Thomas, R., Edwards, M., & Marks, R. (1996). Translocation of the retinoblastoma gene product during mitosis. Experimental Cell Research, 223, 227–232. doi:10.1006/excr.1996.0076
  • Thompson, K.R., Otis, K.O., Chen, D.Y., Zhao, Y., O’Dell, T.J., & Martin, K.C. (2004). Synapse to nucleus signaling during long-term synaptic plasticity; a role for the classical active nuclear import pathway. Neuron, 44, 997–1009. doi:10.1016/S0896-6273(04)00761-5
  • Thran, J., Poeck, B., & Strauss, R. (2013). Serum response factor-mediated gene regulation in a Drosophila visual working memory. Current Biology, 23, 1756–1763. doi:10.1016/j.cub.2013.07.034
  • Ting, C.Y., Herman, T., Yonekura, S., Gao, S., Wang, J., Serpe, M., … Lee, C.H. (2007). Tiling of r7 axons in the Drosophila visual system is mediated both by transduction of an activin signal to the nucleus and by mutual repulsion. Neuron, 56, 793–806. doi:10.1016/j.neuron.2007.09.033
  • Toma, D.P., White, K.P., Hirsch, J., & Greenspan, R.J. (2002). Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nature Genetics, 31, 349–353. doi:10.1038/ng893
  • Török, I., Strand, D., Schmitt, R., Tick, G., Török, T., Kiss, I., & Mechler, B.M. (1995). The overgrown hematopoietic organs-31 tumor suppressor gene of Drosophila encodes an importin-like protein accumulating in the nucleus at the onset of mitosis. Journal of Cell Biology, 129, 1473–1489. doi:10.1083/jcb.129.6.1473
  • Trannoy, S., Redt-Clouet, C., Dura, J.M., & Préat, T. (2011). Parallel processing of appetitive short- and long-term memories in Drosophila. Current Biology, 21, 1647–1653. doi:10.1016/j.cub.2011.08.032
  • Tully, T., Préat, T., Boynton, S.C., & Del Vecchio, M. (1994). Genetic dissection of consolidated memory in Drosophila. Cell, 79, 35–47. doi:10.1016/0092-8674(94)90398-0
  • Tully, T., & Quinn, W.G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. Journal of Comparative Physiology, 157, 263–277. doi:10.1007/BF01350033
  • Vaskova, M., Bentley, A.M., Marshall, S., Reid, P., Thummel, C.S., & Andres, A.J. (2000). Genetic analysis of the Drosophila 63F early puff. Characterization of mutations in E63-1 and maggie, a putative Tom22. Genetics, 156, 229–244.
  • Waeber, G., & Habener, J.F. (1991). Nuclear translocation and DNA recognition signals colocalized within the bZIP domain of cAMP response element binding protein CREB. Molecular Endocrinology, 5, 1431–1438. doi:10.1210/mend-5-10-1431
  • Wagatsuma, A., Azami, S., Sakura, M., Hatakeyama, D., Aonuma, H., & Ito, E. (2006). De Novo synthesis of CREB in a presynaptic neuron is required for synaptic enhancement involved in memory consolidation. Journal of Neuroscience Research, 84, 954–960. doi:10.1002/jnr.21012
  • Wang, X., Amei, A., de Belle, J.S., & Roberts, S.P. (2018). Environmental effects on Drosophila brain development and learning. The Journal of Experimental Biology, 221, jeb169375. doi:10.1242/jeb.169375
  • Wang, X., Green, D.S., Roberts, S.P., & de Belle, J.S. (2007). Thermal disruption of mushroom body development and odor learning in Drosophila. PLoS ONE, 2, e1125. doi:10.1371/journal.pone.0001125
  • Wang, S., Lu, Y., Yin, M.X., Wang, C., Wu, W., Li, J., … Zhang, L. (2016). Importin α1 mediates Yorkie nuclear import via an N-terminal non-canonical nuclear localization signal. Journal of Biological Chemistry, 291, 7926–7937. doi:10.1074/jbc.M115.700823
  • Wang, H., Shao, N., Ding, Q., Cui, J., Reddy, E., & Rao, V. (1997). BRCA1 proteins are transported to the nucleus in the absence of serum and splice variants BRCA1a, BRCA1b are tyrosine phosphoproteins that associate with E2F, cyclins and cyclin dependent kinases. Oncogene, 15, 143–157. doi:10.1038/sj.onc.1201252
  • Yasuhara, N., Yamagishi, R., Arai, Y., Mehmood, R., Kimoto, C., Fujita, T., Touma, K., Kaneko, A., Kamikawa, Y., Moriyama, T., Yanagida, T., Kaneko, H., & Yoneda, Y. (2013). Importin alpha subtypes determine differential transcription factor localization in embryonic stem cells maintenance. Dev Cell, 26(2), 123-35. doi: 10.1016/j.devcel.2013.06.022.
  • Yin, J.C., & Tully, T. (1996). CREB and the formation of long-term memory. Current Opinion in Neurobiology, 6, 264–268. doi:10.1016/s0959-4388(96)80082-1
  • Yin, J.C.P., Wallach, J.S., Del Vecchio, M., Wilder, E.L., Zhou, H., Quinn, W.G., & Tully, T. (1994). Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell, 79, 49–58. doi:10.1016/0092-8674(94)90399-9
  • Yu, D., Akalal, D.B., & Davis, R.L. (2006). Drosophila α/β mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron, 52, 845–855. doi:10.1016/j.neuron.2006.10.030
  • Yudin, D., Hanz, S., Yoo, S., Iavnilovitch, E., Willis, D., Gradus, T., … Fainzilber, M. (2008). Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron, 59, 241–252. doi:10.1016/j.neuron.2008.05.029
  • Zar, J.H. (2010). Biostatistical Analysis (5th ed.). New York: Pearson.
  • Zars, T., Fischer, M., Schulz, R., & Heisenberg, M. (2000). Localization of a short-term memory in Drosophila. Science, 288, 672–675. doi:10.1126/science.288.5466.672

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.